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Abstract

While machine learning has traditionally focused on optimising single loss functions, a growing number of
algorithms deal with multiple interacting goals, from GANs to multi-agent RL. Naively transposing gradient
descent has been shown to fail, while state-of-the-art proposals are tailored to specific applications (e.g. two-
player zero-sum games) or lack strong theoretical guarantees. We provide a unified approach to this problem
and prove local convergence of Consensus Optimisation, Symplectic Gradient Adjustment and lookahead in
all differentiable games. Learning with Opponent-Learning Awareness (LOLA) takes a different approach by
shaping and exploiting opponent learning, reaching better equilibria and outperforming previous methods. On
the flip side, we construct the first example where this backlashes in self-play, producing arrogant behaviour
and poor losses. We address and solve this catch-22 with a new algorithm named Stable Opponent Shaping
(SOS), inheriting strong convergence guarantees from lookahead and shaping capacity from LOLA. We obtain
convergence of LOLA to equilibria in two-player zero-sum and n-player cooperative games as a corollary.
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Chapter 1

Introduction

Much of supervised machine learning is based on optimisation of a single loss function, constructed from a
given dataset and a chosen function approximator. A dataset D = (xi, yi) generically consists of n input-
output pairs, where xi ∈ X is an input vector representing an object of interest (say pixels of an image)
and yi ∈ Y is a label associated to this input (say 1 or 0 for ‘dog’ or ‘not dog’). A function approximator
fθ : X → Y is parametrised by a vector of numbers θ ∈ Rd, say the weights associated to each feature in a
linear function, or the weights of nodes in a neural network. A loss function L : Rd → R is constructed to
capture how close the approximator is from predicting the correct labels on each input. A standard example
is the mean squared error

L(θ) =
1

n

∑
i

‖yi − fθ(xi)‖2 ,

measuring the difference between predicted and true labels in the dataset (possibly in expectation). The most
common way to minimise this function is by gradient descent (GD), optimising the parameters by following
the direction of steepest descent. More precisely, at each step we update the parameters as

θ ← θ − α∇L

for some learning rate α. ∇L is the direction in Rd in which L increases most sharply, so following the
opposite direction is guaranteed to decrease L for sufficiently small α. The success of deep learning has
partially been enabled by the guarantee that gradient descent almost surely converges to minima if saddles
are strict [Lee] [Pan], while the gradient ∇L is easily computed in a neural network by backpropagation
through the layers. If non-strict saddles are present, they can still be avoided through a noisy estimate of the
true gradient – also known as stochastic GD. Although local minima may be nowhere close to global ones,
deep neural networks have been hugely successful and experimentally display good minima.

Nonetheless, this is an unrealistic paradigm in comparison to how humans learn, or how we might expect
artificial intelligence to evolve. Human brains do not learn by optimising a single objective, but through a
fine balancing act between multiple and highly dependent goals. In this light, a growing number of learning
algorithms rely on optimising many losses at once: generative adversarial networks (GANs) [Goo], intrinsic
curiosity [Pat], imaginative agents [Rac], synthetic gradients [Jad] and multi-agent reinforcement learning
(RL) in general. The models are effectively trained as games played by competing modules.
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CHAPTER 1. INTRODUCTION

Multi-loss optimisation can be viewed as a differentiable game, where each loss is associated to a ‘player’
or ‘agent’. The naive approach is for each agent to optimise their loss simultaneously and independently,
by gradient descent. The hope is to reach local ‘minima’ (Nash equilibria) in this way. Instead, circular
behaviour can emerge and prevent convergence entirely, calling for a more involved approach. Even in the
simple game of matching pennies, we will see that players diverge away from Nash for any learning rate.

The intuition behind failure is that each agent treats others as stationary at each learning step, thereby missing
crucial information on the correct update. Each component we are trying to optimise is isolated from the rest,
while they are highly depend on each other. In RL lingo, each agent treats others as part of the environment.
This points towards a third perspective on multi-loss optimisation, where agents not only try to minimise
their loss but also to influence and exploit others. In this light, [Foe] propose Learning with Opponent-
Learning Awareness (LOLA). Each agent predicts the opponent’s learning step and optimises under the
resulting modified loss. In the case of two agents, agent 1 optimises

L1(θ1, θ2 − α2∇θ2L2)

with respect to θ1, instead of L1(θ1, θ2). This accounts for nonstationarity by predicting opponent param-
eters after one step of gradient descent. In the case of matching pennies, this solves the problem and both
agents converge to the Nash equilibrium. We will see that LOLA moreover shapes opponent learning by
differentiating through their learning steps, encouraging cooperative behaviour where previously impossible.

Although appealing and experimentally successful, there are no guarantees that LOLA converges to equi-
libria. In Section 2.4, we present an example where LOLA fails drastically in self-play. LOLA does not
preserve fixed points of the original game, and can converge to parameters producing worse losses for all
agents involved. This stems partly from the assumption that other agents are naive, which is false in self-play
and produces ‘arrogant’ behaviour. One aim of this report is to deal with this problem of asymmetry.

On the other hand, [Bal] propose a novel approach named Symplectic Gradient Adjustment (SGA), for
which minor theoretical guarantees are known. We strengthen these through a unified analytical approach,
producing strong convergence results for a number of algorithms including SGA. However, the method is
not framed from the perspective of each agent, and can instead produce unselfish individual policies. SGA is
concerned with convergence more than individual losses, making it less realistic for multi-agent RL. Finally,
SGA differs from LOLA in failing to shape opponent learning. The main goal of this project is to find a
middle ground between SGA’s convergence properties and LOLA’s exploitative capacities.

The second chapter introduces the required background on multi-loss optimisation and surveys existing
learning schemes in detail. We show that LOLA is capable of exploitation while also prone to harmful (‘ar-
rogant’) behaviour. Chapter 3 provides a unified framework for tackling local convergence, with novel proofs
strengthening the theoretical guarantees of algorithms including SGA. We also investigate non-convergence
to unstable / saddle points. The fourth chapter introduces our main contribution, a new algorithm named
Stable Opponent Shaping (SOS), achieving both provable local convergence and shaping on par with LOLA.
The final chapter displays this exploitative capacity with experimental results in a number of games.
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Chapter 2

Multi-Loss Optimisation

Before we begin, note that ‘minimising’ and ‘optimising’ are used interchangeably in this report, despite the
former applying to losses and the latter to parameters. For linguistic convenience, we also use ‘stability’
to mean ‘convergence to good points, divergence from bad points, preservation of fixed points etc’. Unless
stated otherwise, all proofs in this report are original. It will be mentioned explicitly if parts are inspired
from another source, even if worked through independently.

2.1 Differentiable Games

We frame the problem of multi-loss optimisation as a game, where each player’s goal is to minimise their
individual loss. The following definition is adapted from [Bal], insisting only on differentiability beyond the
standard notion from game theory. This condition is virtually always satisfied in machine learning, making
the problem as general as possible.

Definition 2.1. A differentiable game is a collection of n players with parameters θ = (θ1, . . . , θn) ∈ Rd

and twice continuously differentiable losses Li : Rd → R, where θi ∈ Rdi for each i and
∑

i di = d.

In game theory, parameters are often probabilities and each θi would be restricted to the probability simplex.
We do not impose such a condition, though this may be recovered via sigmoid functions if necessary. From
the viewpoint of player i, the parameters can be written as θ = (θi, θ−i), where θ−i contains all other play-
ers’ parameters. This is not consistent with player order, so one should be careful with this abuse of notation.

In a differentiable game, each player wants to minimise their loss. If n = 1, the ‘game’ is simply to minimise
a given loss function. In this case one can reach local minima by (possibly stochastic) gradient descent, which
is a fixed point of the game since the player cannot further minimise their loss locally. For arbitrary n, it is
unlikely that some point θ̄ locally minimises each loss function simultaneously. Instead, the closest analogue
and most widespread concept of ‘solution’ to the game is a Nash equilibrium.

Definition 2.2. A point θ̄ ∈ Rd is a (local) Nash equilibrium if for each i, there is a neighbourhood Ui of θi

such that
Li(θi, θ̄−i) ≥ Li(θ̄)

3



2.1. DIFFERENTIABLE GAMES

for all θi ∈ Ui. In other words, each player cannot improve their losses locally if the other players’ parameters
are fixed. In game theory lingo, each player’s strategy is a local best response to the other players’.

We will omit the word ‘local’ for convenience. If each neighbourhood Ui can be taken as Rdi , then θ̄ is a
global Nash equilibrium. Note that Nash equilibria may not exist, just as the function f(x) = x has no local
minima. If they do exist, we can only expect to reach local Nash just as we cannot expect to find the global
minimum of a function by gradient descent. For convenience we write

∇iLk = ∇θiLk and ∇ijLk = ∇θj∇θiLk

for any i, j, k. Note that ∇ijLk means ‘first gradient with respect to θi, then with respect to θj’. Define the
simultaneous gradient of the game as the concatenation of each player’s gradient,

ξ =


∇1L

1

...

∇nLn

 ∈ Rd .

The ith component of ξ is the direction of greatest increase in Li with respect to θi. Often ξ will be written
as a row vector for the sake of spacing, but really is defined as a column vector. If each agent minimises their
loss independently, they perform simultaneous GD on their component∇iLi with a learning rate αi. This is
also called naive learning (NL). Hence the overall game parameters θ follow the opposite of ξ:

θ ← θ − α ◦ ξ

where α = (α1, . . . , αn)
ᵀ and ◦ is element-wise multiplication. This reduces to

θ ← θ − αξ

if all agents have the same learning rate. We will always assume this for notational simplicity, though any
result in this report applies to the general case. Before giving a failure example of NL, we provide a useful
sufficient condition for Nash, in terms of simultaneous and higher-order gradients.

Proposition 2.3. Assume ξ(θ̄) = 0 and for each i, ∇iiLi(θ) � 0 for all θ in a neighbourhood of θ̄. Then θ̄
is a Nash equilibrium.

This is implicitly assumed in [Bal, Lemma 2]. We have not found a proof in the literature, and provide our
own below.

Proof. Assume ξ(θ̄) = 0 and ∇iiLi(θ) � 0 for all θ in a neighbourhood U of θ̄. In particular there is
a neighbourhood Ui of θ̄i such that ∇iiLi(θi, θ̄−i) � 0 for each i. By Taylor’s theorem with Lagrange
remainder in many variables [Fol], we have

L(θi, θ̄−i) = Li(θ̄) +∇iLi(θ̄)
ᵀ
(θi − θ̄i) +

1

2
(θi − θ̄i)ᵀ∇iiLi(ν, θ̄−i)(θi − θ̄i)

= Li(θ̄) +
1

2
(θi − θ̄i)ᵀ∇iiLi(ν, θ̄−i)(θi − θ̄i)

4



2.1. DIFFERENTIABLE GAMES

for some ν ∈ Ui. By assumption of positive semi-definiteness we obtain

L(θi, θ̄−i) = Li(θ̄) +
1

2
(θi − θ̄i)ᵀ∇iiLi(ν, θ̄−i)(θi − θ̄i) ≥ Li(θ̄)

for all θi ∈ Ui and each i, so θ̄ is a Nash equilibrium.

Remark 2.4. The converse does not quite hold. It is true that a Nash equilibrium must satisfy ξ(θ̄) = 0

and ∇iiLi(θ̄) � 0 for each i, see Proposition B.1. However positive semi-definiteness may not hold in a
neighbourhood of Nash, even for single losses. For instance,

L(x, y) = x2y2

has a local minimum at (0, 0) with Hessian

H = ∇2L = 2

 y2 2xy

2xy x2


which is trivially positive semi-definite at (0, 0), but not in any neighbourhood. Indeed any such neighbour-
hood contains (ε, ε) for some ε > 0, where the Hessian has determinant

det(H) = 2(ε4 − 4ε4) = −6ε4 < 0 .

Since det(H) = σ1σ2 where σk are the eigenvalues of H , exactly one of them is negative and so H(ε, ε) is
not positive semi-definite by Proposition A.7.

Remark 2.5. On the other hand, it is not enough to assume only the weaker condition that∇iiLi(θ̄) � 0 for
each i. For single losses, this is known as inconclusiveness of the second partial derivative test. For instance,

L(x, y) = x3

gives ∇L = 3x2 with a single fixed point at the origin, while

H = ∇2L = 6x

which is positive semi-definite (i.e. non-negative) at x = 0. However the point is not a Nash equilibrium
(local minimum) since any neighbourhood intersects x = −ε for some ε > 0, where

L(−ε) = −ε3 < 0 = L(0) .

This failure arises precisely because ∇2L � 0 in any neighbourhood of the origin. Combining this remark
with the previous, there is no necessary and sufficient characterisation of Nash equilibria in terms of first-
and second-order gradients. This is well-known even for local minima of single losses.

Remark 2.6. A point θ̄ with ξ(θ̄) = 0 and∇iiLi(θ̄) � 0 for each i is a Nash equilibrium since∇iiLi(θ) � 0

in a neighbourhood, by continuity. This corresponds to the well-known second partial derivative test. The
converse trivially fails, since any point of

L ≡ 0

is a Nash equilibrium, but no point has positive definite Hessian.

5



2.1. DIFFERENTIABLE GAMES

As mentioned in the previous section, NL can fail to converge to Nash. The following example displays this
precisely, even in the simple case of a two-player, two-parameter, zero-sum game.

Example 2.7 (Cyclic game). Consider the game given by

L1(x, y) = xy and L2(x, y) = −xy

where players 1 and 2 control the x and y parameters respectively. Since the losses sum to 0, we cannot have
optimal values for both players simultaneously. The simultaneous gradient is

ξ = (y,−x) ,

with ξ = 0 only at (0, 0). It is a Nash equilibrium since the second-order derivatives are∇11L
1 = ∇22L

2 =

0 ≥ 0 everywhere. There are no other equilibria. However the vector field ξ can be seen to cycle around this
point, as displayed in Figure 2.1.

Figure 2.1: Plot of the vector field ξ = (y,−x).

It follows that simultaneous gradient descent will always fail to converge. For any positive learning rate
α > 0, the agents will overshoot and move further away from the centre. Even for infinitesimal α, they
would stay on a circle of fixed radius around the origin. To see this, consider the Hamiltonian

H :=
1

2
‖ξ‖2 =

1

2
(x2 + y2) .

We have∇H = (x, y) and thus
〈ξ,∇H〉 = xy − yx = 0 ,

so ξ preserves the level sets of H. In other words, ξ is orthogonal to the direction in which ‖ξ‖ increases
or decreases, so taking infinitesimal steps along ξ will cycle around (0, 0). More explicitly, for any current
parameters (x, y), a step of naive learning yields

(x, y)← (x, y)− α(y,−x) = (x− αy, y + αx)

6



2.1. DIFFERENTIABLE GAMES

which has distance from the origin

(x2 − 2αxy + α2y2) + (y2 + 2αxy + α2x2) = (1 + α2)(x2 + y2) > (x2 + y2)

for any α > 0 and (x, y) 6= 0. We conclude that agents diverge away from the origin for any α > 0. Note
however that gradient descent on the Hamiltonian converges to Nash, since H = (x2 + y2) is convex with
global minimum at (0, 0). This will be the motivation behind Consensus Optimization in Section 2.3.

The ‘cyclic game’ corresponds secretly to the game of matching pennies, where two players choose heads or
tails on their respective pennies. The first player’s goal is to match their opponent’s penny, and the second
player’s goal is to differ. They win or lose 1 unit depending on the payoff matrix in Table 2.1. If p1 and p2

are the probabilities of selecting heads for each of the players, the losses in this game are given by

L1 =

(
p1 1− p1

) 1 −1

−1 1


 p2

1− p2

 = −L2 .

Changing variables through p1 = (1 + x)/2 and p2 = (1 + y)/2, we recover

L1 =
1

4

(
1 + x 1− x

) 1 −1

−1 1


1 + y

1− y


=

1

4

(
1 + x 1− x

)2y

2y

 = xy

and L2 = −L1 = −xy as required. Matching pennies is one of the most basic settings in game theory,
essentially a two-action version of rock-paper-scissors. The failure of convergence in this simple case illus-
trates that NL is not a suitable learning technique in general. Before moving on to second-order gradient
methods to address this, we consider an alternative solution concept named Stable Fixed Points (SFP).

Heads Tails

Heads (1,−1) (−1, 1)

Tails (−1, 1) (1,−1)

Table 2.1: Payoff matrix for players (1, 2) in Matching Pennies

7



2.2. STABLE FIXED POINTS VERSUS NASH EQUILIBRIA

2.2 Stable Fixed Points versus Nash Equilibria

First define the Hessian of the game as the block matrix

H = ∇ξ =


∇11L

1 · · · ∇1nL
1

... · · ·
...

∇n1L
n · · · ∇nnLn

 ∈ Rd×d .
This can equivalently be viewed as the Jacobian of the vector field ξ. Note crucially that H is not always
symmetric unless n = 1, in which case we recover the usual Hessian

H = ∇2L .

Its diagonal entries are ∇iiLi, which are relevant to Nash equilibria by Proposition 2.3. Its symmetric and
antimmetric parts are defined as

S =
1

2
(H +H

ᵀ
) and A =

1

2
(H −Hᵀ)

respectively, so that H = S +A.

2.2.1 Potential and Hamiltonian Games

Potential Games: A game is called potential if there is no antisymmetric part, namely A ≡ 0. To appreci-
ate this concept, recall Example 2.7 where NL cycles around the equilibrium. The cause of failure is that ξ is
not the gradient of a single function, implying that each agent’s loss is inherently dependent on others. This
results in a contradiction between the non-stationarity of each agent, and the optimisation of each loss inde-
pendently from others. Potential games are precisely the class where there exists an underlying ‘potential’
function φ : Rd → R such that

∇iLi = ∇iφ ,

so that ξ = ∇φ is the gradient of a single function. This is the definition of exact potential games as
introduced by [Mon], which is equivalent to

∇ijLi = ∇ijφ = (∇jiφ)
ᵀ

= (∇jiLj)
ᵀ

for all i, j. Finally this is equivalent to

∇ijLi − (∇jiLj)
ᵀ

= 0 = Hij −H
ᵀ
ij

for all i, j, namely A ≡ 0 as in our definition. The existence of a potential function lifts multi-loss optimi-
sation into gradient descent on a single function, which is well-understood. More precisely, GD on ξ = ∇φ
converges locally fixed points that are either local minima or saddles of φ. Gradient descent almost always
avoids strict saddle points by [Lee] [Pan], so convergence to local minima of φ is guaranteed under mild
assumptions. We show that local minima of φ are Nash equilibria as follows. [Mon] show that potential
games are equivalently defined as

φ(θi1, θ
−i)− φ(θi2, θ

−i) = L1(θi1, θ
−i)− L1(θi2, θ

−i)

8



2.2. STABLE FIXED POINTS VERSUS NASH EQUILIBRIA

for all i and θi1, θ
i
2, θ
−i. Now if θ̄ is a local minima of φ we have

φ(θ̄i, θ̄−i) ≤ φ(θi, θ̄−i)

for all θi in a neighbourhood of θ̄i, and hence

Li(θ̄i, θ̄−i) ≤ i(θi, θ̄−i)

also. Thus θ̄ is a Nash equilibria, and convergence is well-understood in potential games.

Hamiltonian Games: On the opposite end of the spectrum, a game is called Hamiltonian if there is no
symmetric part, namely S ≡ 0. This was the case of Example 2.7, where we introduced the Hamiltonian

H :=
1

2
‖ξ‖2 .

It was shown in this example that gradient descent on H converges to Nash, and that H preserves the level
sets of ξ. This is true of all Hamiltonian games, thus the name, by [Bal, Th. 3] reproduced below.

Theorem 2.8. If a game is Hamiltonian then (i) ∇H = A
ᵀ
ξ and (ii) ξ preserves the level sets of H. If

the Hessian is invertible and H → ∞ as ‖θ‖ → ∞ then (iii) gradient descent on H converges to a Nash
equilibrium.

We provide a proof in our own words below, following [Bal] with more detail.

Proof. The first claim is trivial since S ≡ 0 implies

∇H =
1

2
∇(ξ

ᵀ
ξ) = (∇ξ)ᵀξ = H

ᵀ
ξ = A

ᵀ
ξ .

Preservation of the level sets follows from antisymmetry of A:

ξ
ᵀ
A
ᵀ
ξ = (ξ

ᵀ
A
ᵀ
ξ)
ᵀ

= ξ
ᵀ
Aξ = −ξᵀAᵀξ

implying
〈ξ,∇H〉 = ξ

ᵀ
A
ᵀ
ξ = 0 .

Finally, gradient descent on a functionH converges to a point θ̄ such that∇H = 0, ifH →∞ as ‖θ‖ → ∞.
Then H

ᵀ
ξ(θ̄) = 0 and by invertibility, ξ(θ̄) = 0. Now S ≡ 0 implies in particular that ∇iiLi = 0

everywhere, which is positive semi-definite. Hence θ̄ is a Nash equilibrium by Proposition 2.3.

We conclude that both potential and Hamiltonian games are well-understood and essentially solved. The
difficult part is to extend such convergence results to general games, where S and A are both non-trivial.

9



2.2. STABLE FIXED POINTS VERSUS NASH EQUILIBRIA

2.2.2 General Games

In Hamiltonian games, we are guaranteed convergence to Nash under mild assumptions. Under similar con-
ditions, we also have convergence to local minima of the potential function φ in potential games, which are
Nash equilibria. Note however that local convergence to all Nash equilibria is not guaranteed, since not all
Nash are minima of φ. This will be displayed in Example 2.15 explicitly, where NL actually diverges away
from Nash for any learning rate and any neighbourhood.

As such, even in the simple class of potential games, local convergence to all Nash fails for naive learning.
Higher-order methods involving the Hessian H = ∇ξ = ∇2φ are also likely to fail, since the game is
governed by φ whose local minima are the relevant points – not Nash equilibria. The following example
shows moreover that local convergence to all Nash would be undesirable, even in potential games.

Example 2.9. Consider the simple potential game given by

L1 = L2 = xy = φ

where players control the x and y parameters respectively. The optimal solution is (x, y) → ±(∞,−∞),
since then L1 = L2 → −∞. However the origin (0, 0) is a global Nash equilibrium since L1(x, 0) = 0 ≥
L1(0, 0) and L2(0, y) = 0 ≥ L1(0, 0) for all x, y ∈ R. It is undesirable to converge to Nash in this game,
since infinitely better losses can be reached by following the anti-diagonal direction.

In general games, it is all the more impossible/undesirable to prove local convergence to all Nash. Instead, the
aim is to prove local convergence to a subclass captured by φ. Stable fixed points were introduced by [Bal]
and correspond to local minima of φ, recalling that such minima satisfy ξ = ∇φ = 0 and H = ∇2φ � 0.
We impose the slightly stronger condition of H � 0 in a neighbourhood to ensure that SFP are a subset of
Nash, though either definition has its pros and cons. For instance, local convergence is proved using only
the weaker condition, so the strengthened version is superficial. We discussed this with [Bal] and keep the
definition intact for now, though may alter it in future work.

Definition 2.10. A point θ̄ is a fixed point if ξ(θ̄) = 0. It is stable if H(θ) � 0 for all θ in a neighbourhood
of θ̄, unstable if H(θ̄) ≺ 0 and a strict saddle if H(θ̄) has a negative eigenvalue.

The name ‘fixed point’ is in line with naive gradient descent, since ξ(θ̄) = 0 implies an update

θ̄ ← θ̄ − αξ(θ̄) = θ̄

which stays fixed. In potential games, we have H = ∇ξ = ∇2φ so stable fixed points are local minima of φ.
Note that local convergence of gradient descent on single functions can only be guaranteed for points such
that H � 0 since they are strict saddles otherwise, which are almost always avoided by [Lee] [Pan]. It is
thus reasonable to prove local convergence only to their multi-loss counterpart, namely SFP.

Finally note thatH(θ̄) � 0 impliesH(θ) � 0 in a neighbourhood, hence being equivalent to the definition in
[Bal]. Also recall from Definition A.5 that a complex eigenvalue is called negative if its real part is negative.

10
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It follows that unstable points are a subset of strict saddles: if H(θ̄) ≺ 0 then all eigenvalues are negative
since any eigenpair (v, λ) satisfies

0 > Re(v
ᵀ
Hv) = Re(λv

ᵀ
v) = Re(λ) .

We introduce strict saddles in this report as a generalisation of unstable FP, for which we can prove identical
results regarding non-convergence. The name is chosen to be identical for single losses as defined in [Lee].

Remark 2.11. Proposition A.4 shows that a matrix H is positive semi-definite iff its symmetric part S is, so
the definition of stability above could equivalently be stated as S(θ) � 0. This is the original formulation
given in [Bal], but we find our formulation intuitively closer to the well-known connections between Hessian
and local minima of single functions.

Remark 2.12. Throughout the report we will see that assuming invertibility of H(θ̄) is central to conver-
gence results. The same assumption is present both throughout [Bal] and [Mes], though the latter forgets to
specify in Corollary 8 that local convergence to Nash only holds if H(θ̄) invertible. We make it explicit in
this remark that all results on local convergence to SFP θ̄ assume invertibility ofH(θ̄), omitted from now on.
On the contrary, our non-convergence results apply equally to singular H .

Proposition 2.13. A stable fixed point is a Nash equilibrium.

Proof. If H(θ) is positive semi-definite in a neighbourhood then so are its diagonal blocks ∇iiLi(θ), so we
are done by Proposition 2.3.

Proposition 2.14. The converse holds in Hamiltonian games.

Proof. A Nash equilibria is a fixed point, which is always stable in a Hamiltonian game since S ≡ 0 � 0.

The original version of [Bal, Lemma 2] claimed that the converse always holds, which is untrue since a
matrix with positive semi-definite diagonal blocks may not be positive semi-definite. We pointed this out
to the authors along with the counter-example below, and a correction was made in the final version of the
paper. He kindly acknowledged us and included this example.

Example 2.15. It is enough to consider Example 2.9 above, but we give a variant whose Nash equilibrium
is strict (strict inequality in the definition) to display a stronger case. Consider the game given by

L1 = x2/2 + 2xy

L2 = y2/2 + 2xy .

The gradient and Hessian are given by

ξ =

x+ 2y

y + 2x

 and H =

1 2

2 1

 .

Note that the game is potential since we have A ≡ 0, with potential function

φ = x2/2 + 2xy + y2/2 .

11
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The only fixed point is given by x = y = 0, which is a strict Nash equilibrium since

L1(x, 0) = x2/2 > 0 = L1(0, 0)

for all x 6= 0 and similarly for y. On the other hand, (0, 0) is not a stable fixed point since S = H has
eigenvalues 3 and −1:1 2

2 1


1

1

 = 3

1

1

 and

1 2

2 1


 1

−1

 = −

 1

−1

 .

Moreover, (0, 0) is not a local minimum of φ despite being a Nash equilibrium, since

φ(ε,−ε) = −ε2 < 0 = φ(0, 0) .

Both players can reach better losses by following the anti-diagonal direction (x,−x), where the losses are

L1 = L2 = x2/2− 2x2 = −3x2/2 < 0 .

This is actually what happens if we follow NL, as is intuitively clear from the plots of L1 and L2 in Figure
2.2. We will prove this formally in the next chapter.

Figure 2.2: Plots of L1 and L2.

Appendix A of [Bal] was revised to mention briefly that Nash cannot be the right concept in light of this
example, and that SFP are preferable. Nonetheless there is no guarantee that SFP is a better sub-class
in general. To establish this, one would need to show that all non-SFP Nash equilibria are undesirable.
Unfortunately this does not hold, by adding a simple term to the previous example.

Example 2.16 (Good non-SFP). Consider

L1 = x2/2 + 2xy + 2y2

L2 = y2/2 + 2xy + 2x2 .

12
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The dynamics will be identical to the previous example, since the extra terms 2y2 and 2x2 are functions of
opponent parameters only. In other words, all gradients wrt to one’s own parameters are identical. It follows
that any algorithm based only on gradients wrt our own parameters will behave likewise in both examples.
In particular NL diverges in the direction (x,−x), where

L1 = x2/2 = L2 > 0

and thus reach infinite losses as they learn, which is the worst possible behaviour. We will see in Example
3.20 that this even occurs for Symplectic Gradient Adjustment, an important caveat to keep in mind. The
silver lining is that each algorithm fails only because there are terms in each loss function that are purely
functions of other players’ parameters. They are beyond each player’s control entirely, a pathological setting
where I can increase my opponent’s loss with no possible counter-play.

Before moving on, we point out a mistake in [Bal]. It is claimed in Lemma 8 that in a two-player zero-sum
game, Nash equilibria are equivalent to SFP. It is true thatH(θ̄) � 0 for any Nash equilibria θ̄ in such games,
but this fails to imply that H � 0 in a neighbourhood. This was pointed out in Remark 2.4, but we extend
the counter-example for two-player zero-sum games below.

Example 2.17. Consider

L1(x, y) = x2y2 and L2(x, y) = −x2y2

with a Nash equilibrium at (0, 0), since

L1(x, 0) = 0 ≥ L1(0, 0) and L2(0, y) = 0 ≥ L2(0, 0) .

Now

H = 2

 y2 2xy

−2xy −x2

 and S = 2

y2 0

0 −x2


which is positive semi-definite at (0, 0), but not in any neighbourhood since S has an eigenvalue −x2 < 0.
Hence (0, 0) is a non-SFP Nash equilibrium, in a two-player zero-sum game.

If neither Nash equilibria nor SFP are the right solution concepts, what is? We propose that of Nash equilibria
θ̄ robust to small perturbations. More precisely, the players cannot move together to a nearby point which is
better for all players. This is a local version of strong Nash equilibria, as defined for instance in [Nes, Def.
2.1]. We formulate this in our own words below.

Definition 2.18. A (local) strong Nash equilibrium is a Nash equilibrium θ̄ with a neighbourhood U such
that for all θ ∈ U ,

Li(θ) ≥ Li(θ̄)

for some player i. Equivalently, there exists no θ ∈ U such that

Li(θ) < Li(θ̄)

for all i. We omit the word ‘local’ for convenience.

13
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Strong Nash are sensitive to the presence of pure opponent terms in each agent’s loss, thus distinguishing
between Examples 2.15 and 2.16 above. On the contrary, SFP is agnostic to them since ξ discards pure
functions of opponent parameters when taking gradients wrt to our own, and so does H . More precisely,
(0, 0) is a non-SFP Nash in both examples. It is not a strong Nash in the first since any neighbourhood
includes (ε,−ε) for some ε > 0, for which

L1 = L2 = −3ε2/2 < 0 = L1(0, 0) = L2(0, 0) .

On the other hand, it is a strong Nash in the second since (0, 0) is a global minimum of each loss function.
This is precisely the behaviour we are looking for in the ‘ideal’ solution concept: the first equilibrium is poor
(moving away produces better losses) while the second is desirable (a local minimum of each loss).

Note that strong Nash and SFP are not subsets of each other. Example 2.16 shows that not all strong Nash
are SFP. For the converse, consider

L1 = 2x2 + 3xy

L2 = 2y2 + 3xy .

with

ξ =

4x+ 3y

4y + 3x


and

H = S =

4 3

3 4

 � 0

since 4 > 0 and det(S) > 0 (Sylvester’s criterion). Then (0, 0) is an SFP (with invertible Hessian), for
which L1 = L2 = 0. However it is not a strong Nash since any neighbourhood includes (ε,−ε) for some
ε > 0, at which

L1 = L2 = −ε2/2 < 0 = L1(0, 0) = L2(0, 0) .

A more detailed understanding of strong Nash is left for future work, not being central to our thesis. Note
only for now that they appear to be a better/ideal solution concept, as exemplified by the correct character-
isation of the equilibria in 2.15 and 2.16. On the other hand, they cannot be classified only through ξ and
higher-order terms including H = ∇ξ, as explained above. In particular it is impossible to prove conver-
gence of algorithms to strong Nash if the method is based only on such terms. They are thus intractable for
those presented downstream; we hope to find better methods to address this problem in the future.

Despite being imperfect, SFP is a class fully characterised by ξ and H . This is central to the development of
(non-)convergence results in Chapter 3.
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2.3 Second-Order Gradient Methods

Example 2.7 demonstrates that circular behaviour can emerge, since both agents fail to take into account
their opponent’s parameter adjustment at each step. We present two methods developed to address this issue,
each making use of second-order gradients of the loss functions.

2.3.1 Consensus Optimization

Recall the Hessian of the game

H = ∇ξ =


∇11L

1 · · · ∇1nL
1

... · · ·
...

∇n1L
n · · · ∇nnLn

 ∈ Rd×d

and notice that the Hamiltonian
H =

1

2
‖ξ‖2

has gradient

∇H =
1

2
∇(ξ

ᵀ
ξ) = (∇ξ)ᵀξ = H

ᵀ
ξ .

As suggested in Example 2.7 and Section 2.2.1, gradient descent on the single functionH may help conver-
gence to Nash by minimising the size of ξ. Indeed, if H → ∞ as ‖θ‖ → ∞ then GD converges to a point θ̄
such that

∇H(θ̄) = 0 = H
ᵀ
(θ̄)ξ(θ̄) .

If the Hessian is invertible at this point, this implies ξ(θ̄) = 0 and so θ̄ is a fixed point of the game. However
there is no guarantee that θ̄ is a stable fixed point, so gradient descent on the Hamiltonian is not a general
solution. This approach can even fail for optimisation of a single loss.

Example 2.19. Consider the ‘game’ given by

L(x) =
−x2

2
.

This is a trivial optimisation problem, and any reasonable algorithm should take x → ±∞ to reach L →
−∞. However GD on the Hamiltonian

H =
1

2
‖ξ‖2 =

1

2
‖∇L‖2 =

1

2
x2

converges to x = 0, the global minimum ofH. This is the global maximum of L!

Instead, [Mes] propose Consensus Optimization (CO), a gradient adjustment of the form

CO = ξ + γ∇H = (I + γH
ᵀ
)ξ

for some parameter γ > 0. In other words, each agent i performs gradient descent on the modified loss

Li + γH

15
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instead of Li only. This encourages cooperation between the agents by minimising the size of ξ as well as
the individual losses. Note that this algorithm is not necessarily selfish, since a player may sacrifice their
immediate loss in favour of the second term. Moreover, γ may have to be chosen extremely small to avoid
convergence towards unstable fixed points.

Example 2.20. We reproduce [Bal, Ex. 5] with more detail. Consider the game given by

L1(x, y) = L2(x, y) = −κ/2(x2 + y2)

with κ very large. We have

ξ = −κ

x
y

 and H = S = −κI .

The only fixed point is (0, 0), which is unstable since S ≺ 0 everywhere. The desirable behaviour would be
to diverge away from this global maximum. Now

CO = (I + γH
ᵀ
)ξ = (1− γκ)ξ = κ(γκ− 1)

x
y

 ,

so for γ > 1/κ the gradient adjustment points in the direction (x, y). Gradient descent updates parameters
by following the negative of this direction, so CO converges to (0, 0) if γ > 1/κ. In other words, γ needs to
be chosen very small if we are to avoid the unstable fixed point.

Nonetheless, CO achieves local convergence to stable fixed points for any γ > 0 and small enough learning
rate α. This was only proven in [Mes] for two-player zero-sum games, and we extend this for n-player
general-sum games in Section 3.2. For sufficiently small γ, we also establish non-convergence from unstable
fixed points in Section 3.6.

2.3.2 Symplectic Gradient Adjustment

More recently, Symplectic Gradient Adjustment (SGA) [Bal] takes a geometric approach improving on CO
in terms of parameter flexibility. Recall the symmetric and antisymmetric parts of H as

S =
1

2
(H +H

ᵀ
) and A =

1

2
(H −Hᵀ)

respectively, then SGA is given by

SGA = ξ + λA
ᵀ
ξ = (I + λA

ᵀ
)ξ .

The parameter λ ∈ R is chosen according to a criterion specified further on. According to [Bal, App.
E], the “antisymmetric matrix A captures the infinitesimal tendency of ξ to rotate at each point”. This is
directed specifically at naive learning’s circular behaviour, while CO is agnostic to the underlying geometry
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in minimising ‖ξ‖. SGA and CO are identical iff the game is Hamiltonian, since H ≡ A iff S ≡ 0. More
details on interpreting A can be found in [Bal], but the essential fact is that

A = dξ

in coordinates (up to musical isomorphism), where dξ is the differential of ξ. Introducing differential forms
in detail is beyond this report, but d is isomorphic to curl for three-dimensional vector fields (through the
Hodge star operator). Hence A corresponds to curl(ξ), which represents the infinitesimal rotations of ξ.

While curl only exists in three dimensions, this argument is somewhat generalised by noticing that the Lie
algebra of infinitesimal rotations is given by antisymmetric matrices. As noted by Wikipedia’s article on
curl, this “allows one to interpret the differential of a 1-vector field as its infinitesimal rotations”. Since
A = dξ, this helps understand the claim in [Bal]. The paper does not explain why multiplying A with ξ then
gives the correct quantity, but a nice answer can be found in [Gem] for three dimensions. Indeed, a standard
result on cross products is that

v × curl(F ) = ∇F (F · v)− (v · ∇)F

where∇F treats v as constant, so that

v × curl(F ) = (∇F )
ᵀ
v −

∑
i

vi∇iF .

Applying this to F = v = ξ, we obtain

ξ × curl(ξ) = H
ᵀ
ξ −

∑
i

ξi∇iξ

where the jth entry of the RHS term is∑
i

ξi∇iξj =
∑
i

∇jiLjξi = (Hξ)j .

Hence we obtain
ξ × curl(ξ) = H

ᵀ
ξ −Hξ = 2A

ᵀ
ξ ,

so that Aᵀξ is perpendicular both to ξ and the axis of rotation curl(ξ). This is theoretically pleasing in
three dimensions, though generalisation is unclear. We hope further understanding to emerge in the future,
though not the subject of this report. Unlike CO, SGA is repelled from unstable fixed points even for large
λ, provided the sign is chosen according to the following criterion:

sign(λ) = sign〈ξ,∇H〉 · sign〈Aᵀξ,∇H〉 .

If this criterion is met, [Bal, Prop. 6] proves that SGA is attracted to SFP while repelled from unstable ones.
This result is independent of |λ|, which is set to 1 in pratice. This provides a flexibility on parameters which
CO lacks, as shown in Example 2.20. On the other hand, players are not guaranteed to be selfish, and may
act against their immediate loss as in CO.

We prove local convergence of SGA to stable fixed points in section 3.3, strengthening [Bal, Th. 5] from
‘attraction’ to strict convergence. The main downside of SGA is its formulation as an adjustment for all
players simultaneously, rather than through each agent’s standpoint. We have not found a way to write SGA
as each player optimising some modified loss, making it less intuitive and realistic for applications to RL.
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2.3.3 Learning with Opponent-Learning Awareness

As introduced in the motivation, failure of NL occurs because each agent treats others as stationary. Instead,
LOLA agents predict opponent learning and optimise the modified loss instead. This perspective is not only
more individual and applicable to RL, but allows for opponent shaping (displayed below). For simplicity we
derive LOLA for n = 2, though the same applies in general. Agent 1 optimises the modified loss

L1(θ1, θ2 + ∆θ2)

with respect to θ1, where ∆θ2 is the predicted learning step. The assumption in [Foe] is that opponents are
naive, namely learn by naive gradient descent

θ2 ← θ2 − α2∇2L
2 ,

so that
∆θ2 = −α2∇2L

2 .

This is an accurate prediction if the opponent is naive, but can lead to poor behaviour in self-play (see
Section 2.4). After first-order Taylor expansion, the loss is approximately given by

L1 +∇2L
1 ·∆θ2

where we omit the arguments (θ1, θ2) for convenience. The first term is our usual loss, while the second
represents the alignment between the opponent’s learning direction and its impact on our loss. The agent op-
timises this quantity with respect to θ1 by gradient descent. Differentiating with respect to θ1, the adjustment
for agent 1 is thus given by

∇1L
1 +

(
∇21L

1
)ᵀ

∆θ2 +
(
∇1∆θ2

)ᵀ
∇2L

1 .

By explicitly differentiating through ∆θ2, LOLA actively shapes future opponent learning by choosing pa-
rameters that align their next learning step with our goals. As such, this term helps to exploit opponent
dynamics and encourage cooperation. We use the word ‘exploitation’ to mean exploitation of opponent
dynamics, not opponents themselves. LOLA differs from policy prediction as in [Zha], which optimises

L1(θ1, θ̂2 + ∆θ2(θ̂1, θ̂2))

where θ̂1, θ̂2 are the current parameters. After Taylor expansion, the gradient wrt θ1 is given by

∇1L
1 +

(
∇21L

1
)ᵀ

∆θ2

since ∆θ2(θ̂1, θ̂2) does not depend on θ1. LOLA contains one further term, by assuming that our opponent’s
learning step ∆θ2 depends on our current optimisation with respect to θ1. This is inaccurate since the oppo-
nent cannot see our updated parameters until the next step, but allows for shaping (influence) in future steps.
If α2 is small enough, the opponent’s parameters will not change drastically and our optimisation will be a
good approximation to shaping at the next step. This is what mostly happens in practice.
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In [Foe], the middle term (common with plain lookahead) is dropped because “LOLA focuses on this shaping
of the learning direction of the opponent”. We do not find it necessary to eliminate this term, and preserving
both will in fact be key to finding a stable and exploitative algorithm. Experimentally, LOLA displays
very encouraging results, both against naive and LOLA agents. A number of examples including Iterated
Prisoner’s Dilemma (IPD) are given in [Foe], also discussed and reproduced in Chapter 5. In the IPD, self-
play LOLA most often converges to tit-for-tat policy where the losses are−1 for both. Instead, NL/SGA/CO
almost always converge to defect-defect, where the losses are −2. Both policies are Nash equilibria, but tit-
for-tat is strictly superior. We illustrate LOLA’s capacity to reach better equilibria through opponent shaping
in the following novel example.

Example 2.21 (Logistic game). Define the logistic function σ : R→ (0, 1) by

σ(x) =
1

1 + e−x
,

often used as an node activation function in neural networks. Consider the game given by

l1(x, y) = 4σ(x)(1− 2σ(y)) and l2(x, y) = 4σ(y)(1− 2σ(x)) ,

with each loss plotted in Figure 2.3. Note that σ′(x) = σ(x)σ(−x), so

ξ = 4

σ(x)σ(−x)(1− 2σ(y))

σ(y)σ(−y)(1− 2σ(x))


which only vanishes at σ(x) = σ(y) = 1/2, namely x = y = 0. Hence the only fixed point is (0, 0), but is
not a Nash equilibrium since

l1(ε, ε) = l2(ε, ε) = 4σ(ε)(1− 2σ(ε)) < 0 = L1(0, 0)

for any ε > 0. There are no Nash equilibria in this game, though it is clear that the desirable behaviour is for
agents to move in the direction (x, x) where losses converge to (−4,−4), rather than (−x,−x) where losses
converge to (0, 0). To build explicit equilibria, we can add the function

B(x, y) = x2y2/1000 + (x− y)2(x+ y)2/1000

to both losses, which increases in all directions while being small in a decent neighbourhood of the origin.
Note that f(x, y) = x2y2 increases in all directions except along the lines x = 0 and y = 0. We can rotate
this surface by π/4 to obtain an increase along these missing lines, through a rescaled rotation matrix:

f

√2

cos(π/4) − sin(π/4)

sin(π/4) cos(π/4)


x
y


 = f(x− y, x+ y) = (x− y)2(x+ y)2 .

This will increase in all directions except along the lines x = y and x = −y, hence adding both terms in B
successfully explodes everywhere away from the origin. This bends the surface upwards, giving birth to two
Nash equilibria as visualised in Figure 2.3. The ‘logistic’ game is thus given by

L1 = l1(x, y) +B(x, y) and L2(x, y) = l1(x, y) +B(x, y)
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and we obtain two solutions to ξ = 0, both SFP. Computed numerically, they are given by θ̄± ≈ ±(5.03, 5.03)

with corresponding losses

L1(θ̄+) = L2(θ̄+) ≈ −3.86 and L1(θ̄−) = L2(θ̄−) ≈ 0.09 .

Figure 2.3: Plots of l1, l2 (top) and L1, L2 (bottom).

It is desirable for an algorithm to reach the better equilibrium θ̄+, but all previous algorithms are less suc-
cessful than LOLA in this respect. Note that local convergence to both SFP is guaranteed for CO and SGA,
but depends on the parameter initialisation. Intuitively, if x0, y0 are both positive then θ̄+ will be reached,
while if both are negative then θ̄− will be reached. If they have opposite signs then this depends on their size.

On the contrary, LOLA successfully reaches θ̄+ even from poor initialisations with both x0, y0 negative.
LOLA will still reach θ̄− if the initial parameters are both strongly negative, say x0 = y0 = −1, but
on random initialisation LOLA succeeds more often than CO or SGA. To display this experimentally, we
run 300 episodes of training runs with α = γ = 1. Recall that λ is chosen according to the criterion
specified in the previous section, with modulus 1. Each run consists of 100 learning steps, while we initialise
−0.5 < x0, y0 < 0.5 uniformly at random. In Table 2.2 we show that LOLA succeeds in reaching θ̄+ almost
100% of the time, hence reaching lower losses than SGA/CO/NL on average. This is displayed explicitly in
Figure 2.4, where losses are averaged across all episodes with shaded standard deviations.
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Figure 2.4: Average losses in the logistic game at each learning step, across 300 episodes, with shaded
standard deviations. LOLA reaches lower losses than SGA/CO/NL through opponent shaping.

LOLA SGA CO NL

Mean(std) −3.86(10−7) −1.87(1.97) −2.06(1.97) −1.83(1.97)

% θ̄+ 100.0 49.7 54.3 48.7

Table 2.2: Results at the end of 300 training runs in the logistic game. Top column: mean and standard
deviations of agent losses. Bottom column: percentage of convergence to θ̄+. Best result in bold.

On the downside, there is no guarantee that LOLA converges to SFP, unlike SGA and CO. In fact, we will
see in section 2.4 that LOLA fails to preserve fixed points of the game. The aim of this project is to find a
middle ground between the exploitative capabilities of LOLA, and the convergence guarantees of SGA.

We begin by formulating LOLA in vectorial form, enabling a higher-level comparison with CO and SGA.
For simplicity we derive this for two-player games and write the general expression without proof. First
write Hd and Ho for the diagonal and off-diagonal of H respectively, and L = (L1, . . . , Ln) the vector
field of loss functions. Finally define the operator diag : Rd×d → Rd constructing a vector from the matrix
diagonal, namely diag(M)i = Mii for each entry i.

Proposition 2.22. Let χ = diag(H
ᵀ
o∇L). The LOLA gradient adjustment is given by

LOLA = (I − αHo)ξ − αχ .

Remark 2.23. Just as learning rates are hyperparameters for each player, each agent can treat opponent
learning rates as hyperparameters instead of using the true rate. For instance, agent 1 can optimise

L1(θ1, θ2 − α1
2∇2L

2, . . . , θn − α1
n∇nLn)

where α1
i is chosen by agent 1. This may seem a little unnatural, but in practice can be useful if true learning

rates are very small. Indeed, the iterative procedure for LOLA is given by

θ ← θ − αLOLA = θ − αξ − α2(Hoξ +H
ᵀ
o
χ)
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at each step. If α is very small then α2 is tiny, rendering LOLA almost identical to naive learning

θ ← θ − αξ .

This may be undesirable in practical implementations, so opponent rates can be made larger to prevent α2

from virtually vanishing. This is an issue to keep in mind for practitioners, who may wish to set opponent
rates to (say) 1 as in [Foe]. This yields adjustment terms of order α instead of α2.

Proof. Recall the modified objective

L1(θ1, θ2 − α∇2L
2, . . . , θn − α∇nLn)

for agent 1, and so on for each agent. First-order Taylor expansion yields

L1 − α
∑
j 6=1

(∇jL1)
ᵀ∇jLj

and similarly for each agent. Differentiating with respect to θi, the gradient adjustment for player i is

LOLAi = ∇i

Li − α∑
j 6=i

(∇jLi)
ᵀ∇jLj


= ∇iLi − α

∑
j 6=i

(∇jiLi)
ᵀ∇jLj + (∇jiLj)

ᵀ∇jLi

= ∇iLi − α
∑
j 6=i
∇ijLi∇jLj − α

∑
j 6=i

(∇jiLj)
ᵀ∇jLi

= ξi − α
∑
j

(Ho)ijξj − α
∑
j

(H
ᵀ
o )ij(∇L)ji

= ξi − α(Hoξ)i − α(H
ᵀ
o∇L)ii

=
[
ξ − αHoξ − α diag(H

ᵀ
o∇L)

]
i

and thus
LOLA = (I − αHo)ξ − αχ .

For easier comparison with LOLA, note that

A =
1

2

(
H −Hᵀ

)
=

1

2

(
Ho −H

ᵀ
o

)
since the diagonal elements of H are cancelled out. Adjusting λ by a factor of 2 in SGA, we obtain

SGA = ξ + λ
(
H
ᵀ
o −Ho

)
ξ

CO = ξ + γ
(
H
ᵀ
o +H

ᵀ
d

)
ξ .

Note that LOLA and SGA have two common terms ξ and H
ᵀ
o ξ, while differing in one. We prove the

novel result that in two-player zero-sum games, LOLA and SGA become identical. It is enough to assume
constant-sum, though these concepts are virtually identical.
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Proposition 2.24. In a two-player constant-sum game, LOLA is identical to SGA with α = λ.

Proof. We have L1 = −L2 + c for some constant c, so∇1L
2 = −∇1L

1 and∇2L
1 = −∇2L

2. This implies

χ = diag

 0 ∇12L
2

∇21L
1 0


∇1L

1 ∇1L
2

∇2L
1 ∇2L

2

 = diag

∇12L
2∇2L

1 ·

· ∇21L
1∇1L

2


=

∇12L
2∇2L

1

∇21L
1∇1L

2

 = −

∇12L
2∇2L

2

∇21L
1∇1L

1

 = −

 0 ∇12L
2

∇21L
1 0


∇1L

1

∇2L
2

 = −Hᵀo ξ .

It follows immediately that
LOLA = (I − αHo)ξ + αH

ᵀ
o ξ = SGA .

We prove a second novel simplification for LOLA in the class of n-player fully cooperative games.

Proposition 2.25. In a fully cooperative game,

LOLA = (I − 2αHo)ξ .

Proof. Since Li = L1 for all i, we have

Ho =


0 · · · ∇1nL

1

... · · ·
...

∇n1L
1 · · · 0

 = H
ᵀ
o

since∇ijL1 = (∇jiL1)
ᵀ for all i, j. Now

ξ = (∇1L
1, · · · ,∇nL1)

ᵀ

and thus

Ho∇L = Ho


∇1L

1 · · · ∇1L
1

... · · ·
...

∇nL1 · · · ∇nL1

 = Ho

(
ξ · · · ξ

)
=

(
Hoξ · · · Hoξ

)
,

from which we obtain
χ = diag(H

ᵀ
o∇L) = Hoξ .

Finally we conclude
LOLA = (I − αHo)ξ − αχ = (I − 2αHo)ξ .

Although LOLA is conceptually attractive, applicable to RL and capable of opponent shaping, there are no
theoretical guarantees whatsoever. We will prove in Chapter 4 that LOLA converges locally to SFP in two-
player zero-sum and n-player fully cooperative games. The next section demonstrates that in general games,
LOLA can fail entirely due to false (‘arrogant’) assumptions about opponents.
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2.4 Arrogance and Symmetry

LOLA’s core weakness is its failure to preserve fixed points of the game. More precisely, assume θ̄ is a fixed
point of the game, so that ξ(θ̄) = 0. Then

LOLA = (I − αHo)ξ(θ̄)− αχ(θ̄) = −αχ(θ̄)

which may be non-zero. If the agents are at a Nash equilibrium of the original game, one should expect a
reasonable algorithm to keep them there, since the optimal policy is the current one. On the contrary, LOLA
pushes them away at the next step whenever the term above is non-zero.

Nonetheless, note that Nash equilibria are only optimal for each player if others are stationary. One might
hope that moving away from Nash produces better losses for all agents simultaneously; in other words, that
the new fixed points are better. This can happen, as in the following example.

Example 2.26. Consider a variant of the cyclic game given by

L1(x, y) = xy − y and L2(x, y) = −xy + x ,

with
ξ = (y,−x)

as before. Note that all extra terms are pure opponent so the dynamics of NL, CO and SGA will not be
altered. More precisely, CO and SGA are guaranteed to converge to the origin, which is an SFP since

H =

 0 1

−1 0

 = Ho

and thus S ≡ 0 � 0. Now

χ = diag

0 −1

1 0


 y −y + 1

x− 1 −x

 =

−x+ 1

−y + 1

 6= 0

at (0, 0), so LOLA fails to preserve the fixed point. However, LOLA’s fixed point (x′, y′) is obtained by
solving the equation

LOLA = ξ − αHoξ − αχ = 0 ,

which gives
(x′, y′) =

α

1 + 4α2
(2α− 1, 2)

and corresponding losses

L1(x′, y′) =
−2α(1 + α+ 4α2)

(1 + 4α2)2
and L2(x′, y′) =

α(2α− 1)(1 + 4α2 − 2α)

(1 + 4α2)2
.

These are both negative for 0 < α < 1/2, which is better for both agents than the losses L1 = L2 = 0 at the
original fixed point (0, 0).
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This example highlights that LOLA, unlike previous algorithms, is capable of dealing with pure opponent
terms and adjust parameters accordingly. The dynamics of the game above are not identical to the cyclic
game for LOLA, since pure opponent terms do not vanish in χ. In particular, (0, 0) is not a strong Nash
equilibrium and LOLA successfully captures this information. This points to further work regarding higher-
order algorithms capable of converging/detecting strong Nash equilibria.

Unfortunately, moving away from Nash in this way does not always produce better losses, as shown in the
following example. The problem emerges from the false assumption that an agent can influence opponent
learning instantaeously, whereas this actually occurs at the next step. A second cause for failure is the
assumption that opponents are naive, when they are actually LOLA in self-play.

Example 2.27 (Humility game). Consider the game given by

L1(x, y) = (x+ y)2/2− 10x and L2(x, y) = (x+ y)2/2− 10y .

Intuitively, each agent wants to have x ≈ −y since (x + y)2 is the leading loss, but also wants to have
positive x and y respectively. These are incompatible desires, so the agents must make concessions. The
Nash equilibria are given by

ξ =

x+ y − 10

x+ y − 10

 = 0 ,

namely any pair (x, 10− x). The corresponding losses are

L1 = 10(5− x) and L2 = 10(x− 5)

and sum to 0 for any x. Note that the only Nash equilibrium which is symmetric in both agents is when
L1 = L2 = 0, namely when x = y = 5. We have

H = S =

1 1

1 1

 � 0

everywhere. We prove directly that NL converges to Nash from any starting point z0, while LOLA won’t.
The eigenvectors of S are

u =

1

1

 and v =

 1

−1


with eigenvalues 2 and 0. Writing zk = aku+ bkv, the iteration is given by

zk+1 = F (zk) = zk − αξ .

Since F is linear, a Taylor expansion around (5, 5) gives

zk+1 = F (5, 5) +∇F · (zk − (5, 5))

ak+1u+ bk+1v = (5, 5) + (I − α∇ξ)ᵀ(zk − 5u)

(ak+1 − 5)u+ bk+1v = (I − αS)(zk − 5u)

= (1− 2α)(ak − 5)u+ bkv .
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By induction it follows that

ak = 5 + (1− 2α)k(a0 − 5) and bk = b0 ,

and thus

lim
k→∞

zk = 5u+ b0v =

5 + b0

5− b0


for 0 < α < 1. This is a Nash equilibrium, so naive descent converges to Nash for small α. Note that A = 0

here, so SGA is identical to NL and we obtain the same guarantee.

However, LOLA converges to fixed points which are not Nash, and are strictly worse for both players. This
arises because each LOLA agent overshoots x + y = 5, assuming that the other agent will decrease their
parameter in response since they are naive. But the other agent is not naive and also overshoots, leading to
larger parameters and thus larger losses for both. Each agent becomes ‘arrogant’ in this way, arising from
incorrect assumptions regarding naivety of the opponent and immediate response to our update. Formally,

LOLA = ξ − αHoξ − αχ

=

x+ y − 10

x+ y − 10

− α
0 1

1 0


x+ y − 10

x+ y − 10

− α diag

0 1

1 0


x+ y − 10 x+ y

x+ y x+ y − 10


=

(x+ y)(1− 2α)− 10(1− α)

(x+ y)(1− 2α)− 10(1− α)

 .

The fixed points are thus pairs (x, y) such that

x+ y =
10(1− α)

1− 2α
> 10

for α > 0. For a reasonably small learning rate like α = 0.05, the symmetric fixed point occurs at

x = y =
10(1− 0.05)

2(1− 0.1)
≈ 5.28 .

This leads to losses
L1 = L2 ≈ (10.6)2/2− 53 ≈ 3

which are much larger than 0, the original symmetric fixed point of the game. In general, any fixed point
yields

L1 + L2 ≈ 6� 0 .

This decreases to 0 as the learning rate becomes smaller, but is always positive for α > 0. Moreover, taking
α extremely small is not a viable solution since convergence will be correspondingly slow. We can similarly
prove that LOLA converges to these points, which are always worse than Nash. LOLA is thus not a strong
algorithm candidate for general games.
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We present a few attempts to solve this problem. The principal culprit is LOLA’s shaping term, which
prevents the algorithm from preserving fixed points. The first subsection investigates the idea of ‘killing’
this term in a coherent way. This is more detailed than necessary to provide intuition and understanding of
the idea behind SOS. In a different direction, the assumption that opponents are naive is also at fault. The
second subsection will deal with assuming the opponent is a LOLA agent instead. This is not central to our
report and will not be used further on, but an interesting exploration nonetheless.

2.4.1 Killing the Shaping

Consider removing the shaping term entirely, obtaining a gradient adjustment

(I − αHo)ξ .

This preserves fixed points since ξ = 0 implies a zero adjustment. But what does this quantity mean, and is
it reasonable to simply kill the shaping term without further justification? Luckily, there is a natural way to
view this proposition. Instead of optimising the LOLA objective

L1(θ1, θ2 − α∇2L
2(θ1, θ2)) ,

recall from Section 2.3.3 the variant

L1(θ1, θ2 − α∇2L
2(θ̂1, θ̂2))

where θ̂1, θ̂2 are the current parameters. In other words, each agent predicts the behaviour of opposite agents
after a step of naive learning – but assume that this step will occur independently of our current optimisation.
This is the correct assumption, since our parameter update can only influence future steps. We discovered
this independently as a cure to the false assumption of dynamic response, but later found that it was originally
proposed in [Zha]. We name this method ‘lookahead’ (LA) for future convenience. Finally we reformulate
the objective using stop-gradients, a computational concept introduced below.

Definition 2.28. Let ⊥ be the stop-gradient computational operator, known in PyTorch as detach and in
Tensorflow as stop_gradient. This operator acts on functions, setting their gradient to zero artificially
while keeping their value intact. In other words,

⊥f(x) = f(x)

when evaluated at x, while
∇(⊥f)(x) = 0

for any x. This operator is not well-defined as a mathematical object, since using the equality⊥f(x) = f(x)

implies ⊥f = f as functions, and thus
∇(⊥f) = ∇f 6= 0 .

To avoid confusion we write ⊥f � f and ∇(⊥f) � 0 as in [Foe2], where� represents evaluation. In
computational terms, ‘return f(x) if ⊥f is evaluated at x, return 0 if∇(⊥f) is evaluated at x’.
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In this new language, optimising
L1(θ1, θ2 − α∇2L

2(θ̂1, θ̂2))

with respect to θ1 is equivalent to optimising

L1(θ1, θ2 − α⊥∇2L
2)

since L2(θ̂1, θ̂2) is not a function of θ1. After first-order Taylor expansion, this is approximately given by

L1 − α∇2L
1 · ⊥∇2L

2 .

Differentiating with respect to θ1, the gradient adjustment is

∇1L
1 − α

(
∇21L

1
)ᵀ
∇2L

2

= ∇1L
1 − α∇12L

1∇2L
2

where the third term present in LOLA disappears thanks to the stop-gradient. The derivation is similar for
agent 2, resulting in a gradient adjustment∇1L

1 − α∇12L
1∇2L

2

∇2L
2 − α∇21L

2∇1L
1

 = ξ − α

 0 ∇12L
1

∇21L
2 0


∇1L

1

∇2L
2

 = (I − αHo)ξ .

This is precisely LOLA deprived of its shaping term! We can view this as a ‘soft’ version of LOLA where
the shaping term is dropped, while the best-response to naive learning is kept. The main result of [Zha]
is that lookahead converges to Nash equilibria in two-player, two-action bimatrix games, through case-by-
case analysis of the different game dynamics. In Section 3.5 we prove that LA converges locally to SFP in
any differentiable game. We also provide a vastly shorter proof of the two-player two-action special case –
though applying only locally to SFP, rather than globally to Nash.

Removing the shaping term not only preserves fixed points, but produces strong convergence guarantees.
Nonetheless, the whole purpose of LOLA was to incorporate a shaping term giving room for exploitation
and cooperation. By dismissing the problematic element, we also discarded LOLA’s strengths. Recall from
the motivation that one of our aims is to find an algorithm both stable and capable of opponent shaping. The
initial idea of this project was to combine SGA and LOLA in some way to accomplish this. The difficulty is
that SGA and LOLA involve very different terms in general games, so combining them is highly artificial. A
better approach is to combine LOLA with lookahead, a natural variant. More precisely, consider optimising

L1(θ1, θ2 − α
(
p∇2L

2 + (1− p)⊥∇2L
2
)
)

where p ∈ [0, 1]. This corresponds to LA at p = 0, and LOLA at p = 1. After Taylor expansion, the
adjustment is simply given by

(I − αHo)ξ − αpχ .

This is a natural interpolation between the two algorithms, where p is a parameter trading between exploita-
tion and stability. Fixing any p > 0 will still fail to preserve fixed points, so the question is how to choose p
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dynamically. The most naive approach would be to take p(t) as a function of time, with p(t)→ 0 as t→∞.
This promises to begin with opponent shaping while converging to SFP eventually. The humility problem
is solved since each agent becomes less arrogant over time. But any choice of decreasing function such as
p(t) = 1/t is arbitrary, and may either converge too slowly or shape opponents for too little time. More-
over, this prevents p from growing again in the future if necessary, a core component of dynamic exploitation.

Another approach may involve a choice of p based on the accuracy of our assumptions on immediate in-
fluence. By measuring the difference between predicted and opponent update at each step, we can adjust
p accordingly. In the humility game, agent 1 expects agent 2 to decrease its parameter – but this does not
occur. The agent can thus decrease p to mirror the understanding that our opponent will react only in future
updates, thus becoming more humble. This still feels like an ad-hoc approach. Instead we develop a more
consistent and rational choice criterion for p in Chapter 4, leading to Stable Opponent Shaping (SOS).

2.4.2 Higher-Order LOLA

In the humility game, each agent becomes arrogant because they assume that opponents are naive. Another
possibility is to assume that opponents are LOLA agents instead. One might hope to circumvent the arro-
gance problem in this way. Unfortunately a problem of symmetry arises: the agents are no longer LOLA
but a higher-order variant, making their assumption on opponents still incorrect. Moreover, assumption of
immediate response to our parameter update still prevents preservation of fixed points.

To see this in detail, we formally define higher-order LOLA agents as follows. Recall that learning with
opponent-learning awareness is defined as optimising the modified objective

L1(θ1, θ2 + ∆θ2) ,

where ∆θ2 is the step we expect our opponent to take. In ‘first-order’ LOLA, we assume the other agent is
naive and thus

∆θ2 = −α∇2L
2(θ1, θ2) .

For higher orders, recursively define

∆θ2
i = −α∇2L

2(θ1 + ∆θ1
i−1, θ

2)

∆θ1
i = −α∇1L

1(θ1, θ2 + ∆θ2
i−1)

for any i > 0, and ∆θ1
0 = θ2

0 = 0. Then a LOLAi agent is defined to minimise the objective

L1(θ1, θ2 + ∆θ2
i ) ,

i.e. the opponent is assumed to be a LOLAi−1 agent. As usual, this is done by gradient descent

θ1 ← θ1 − α∇1L
1(θ1, θ2 + ∆θ2

i )

for some learning rate α > 0. This is hard or impossible to compute in settings like (model-free) rein-
forcement learning, where agents can typically only compute the value function and gradients at current
parameters. Hence we perform a first-order Taylor expansion to obtain

θ1 ← θ1 − α∇1L
1 − α∇1(∇2L

1 ·∆θ2
i )
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where we omit the arguments (θ1, θ2) for convenience. In particular, LOLA0 is a naive learner (assumes the
opponents are stationary), while LOLA1 is the usual LOLA agent above. For higher orders, ∆θ2

i must also
be Taylor-expanded. For instance, for i = 2 we have

∆θ2
2 = −α∇2L

2(θ1 − α∇1L
1, θ2)

≈ −α∇2L
2 + α2∇2(∇1L

2 · ∇1L
1)

and obtain the convoluted update

θ1 ← θ1 − α∇1L
1 + α2∇1(∇2L

1 · ∇2L
2)− α3∇1(∇2L

1 · ∇2(∇1L
2 · ∇1L

1)) .

On top of computational tractability, performing these Taylor expansions helps to frame the LOLAi learning
process as comprised of the LOLAi−1 component (the first three above), along with an adjustment/response
term (the last). Moreover, each higher-order term is smaller than the previous by a factor of α. In partic-
ular, LOLA1 is a simple ‘deformation’ of naive learning attempting to predict and shape opponent behaviour.

What happens if we play the humility game with LOLA2 agents? The initial intuition might be that they
respond to LOLA1 overshooting by undershooting, thus converging to the correct Nash equilibrium. Unfor-
tunately this optimism is flawed. Performing similar computations as for LOLA1, the symmetric fixed point
of the new objective is given by

x = y ≈ 5.23

which agents converge to. This produces losses

L1 = L2 ≈ 2.4 ,

which is still worse than the Nash equilibrium where both losses are 0. This arises because each agent treats
the opponent adjustment term ∆θ2

2 as dynamically responsive to our change, whereas it actually occurs a
step later. Moreover, the assumption that our opponent is a LOLA1 agent is still wrong, since they are
now LOLA2. The symmetry in self-play prevents any higher-order agent from being accurate regarding
their opponent, since by definition a LOLAi agent assumes its opponent is LOLAi−1. At any order, the
agent believes it is smarter than its competitors, leading to arrogance. Following the trend in the previous
subsection, one might wish to consider a soft version of LOLA2, defined as optimising

L1(θ1, θ2 +⊥∆θ2
2)

with respect to θ1. This still fails to preserve fixed points, since the ∆θ2
2 term itself involves χ. Nonetheless it

turns out that soft LOLA2 agents converge to parameters with slightly negative losses in the humility game,
which is strictly better than the Nash equilibrium. Moreover, we can establish something along these lines
as a theoretical guarantee for all games. This is of independent theoretical interest.

Proposition 2.29. If ∇12L
1,∇21L

2 are invertible and soft LOLA2 agents move away from a Nash equilib-
rium, then both losses decrease for small enough learning rate α.
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Proof. Indeed, at Nash we have∇1L
1 = ∇2L

2 = 0 and thus

θ1 ← θ1 − α∇1L
1 − α∇1(∇2L

1 · ⊥∆θ2
2)

= θ1 − α(∇21L
1)
ᵀ
(−α∇2L

2 + α2∇2(∇1L
2 · ∇1L

1))

= θ1 − α3∇12L
1(∇12L

1)
ᵀ∇1L

2 .

A similar derivation holds for the second agent. By Taylor expansion of the loss at the next step,

L1(θ1 − α3∇12L
1(∇12L

1)
ᵀ∇1L

2, θ2 − α3∇21L
2(∇21L

1)
ᵀ∇2L

1)

= L1 − α3∇1L
1 · ∇12L

1(∇12L
2)
ᵀ∇1L

2 − α3∇2L
1 · ∇21L

1(∇21L
1)
ᵀ∇2L

1 +O(α4)

= L1 − α3(∇2L
1)
ᵀ∇21L

1(∇21L
1)
ᵀ∇2L

1 +O(α4) .

Note that ∇21L
1(∇21L

1)
ᵀ is positive semi-definite and symmetric, so semi-definite by the invertibility as-

sumption. Hence
L1 − α3(∇2L

1)
ᵀ∇21L

1(∇21L
1)
ᵀ∇2L

1 +O(α4) < L1

for small α > 0 as required. A similar derivation holds for the second loss, so any small step away from a
Nash equilibrium produces lower losses for all.

This points to soft LOLA2 as a potentially strong algorithm in discovering better fixed points for all agents,
capable of incorporating pure opponent terms while not displaying arrogance in this game. Although soft
LOLA2 may therefore be a strong strategy in self-play, why not use the soft version of LOLA1, lookahead,
in the first place? We will see in Section 3.5 that lookahead not only preserves fixed points of the game, but
converges locally to stable fixed points. This is untrue of soft LOLA2, since preservation of fixed points fails
despite the possible advantage that may be. Further inquiry regarding convergence of soft LOLA2 to new
fixed points is left for future work.
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Chapter 3

Theoretical Results

3.1 Local Convergence

This section introduces Ostrowski’s Theorem, a standard result on fixed-point iterations, as a unified frame-
work for proving local convergence of gradient-based methods. This approach is inspired from [Mes]. We
recommend going through Appendix A for a quick review of linear algebraic concepts including positive
definiteness and stability. Recall only that a matrix M is positive stable if all its eigenvalues have positive
real part, which holds in particular if M is positive definite. The following is adapted from [Ber, p. 231] and
[Ort, 10.1.3]. We provide intuition and a sketch proof in Proposition B.2.

Theorem 3.1 (Ostrowski). Let F : Ω → Rd be continuously differentiable on an open subset Ω ⊆ Rd, and
assume x̄ ∈ Ω is a fixed point. If all eigenvalues of ∇F (x̄) are strictly in the unit circle of C, then there is
an open neighbourhood U of x̄ such that for all x0 ∈ U , the sequence F (k)(x0) converges to x̄. Moreover,
the rate of convergence is at least linear in k.

This frames the problem of local convergence as an eigenvalue analysis of∇F , where F is defined as taking
a step in some gradient-based direction. For familiarity we begin with gradient descent on a single loss L. In
this case, F is given by

F (x) = x− α∇L(x)

for some learning rate α > 0. The gradient is

∇F = I − αH ,

where H = ∇2L is the Hessian. If H has eigenvalues λk = ak + ibk, the eigenvalues of∇F are

1− αak − iαbk .

These are in the unit circle if and only if ai > 0 and α is small enough, since the real component is pulled
below 1 and the imaginary component is made arbitrarily small. More precisely, we need

|1− αak − iαbk|2 < 1

⇐⇒ 1− 2αak + α2a2
k + α2b2k < 1

⇐⇒ 0 < α <
2ak

a2
k + b2k

(†)
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which is possible for any ak > 0. As such, gradient descent is guaranteed to converge locally to a fixed point
x̄ if H(x̄) is positive stable. For a single loss, this is equivalent to being positive definite since H is symmet-
ric, see Proposition A.8. Assuming H(x̄) � 0, or equivalently H(x̄) � 0 and invertible, is thus sufficient to
prove local convergence of GD to x̄. Note however that Ostrowski does not apply if H(x̄) � 0, namely if x̄
is not an SFP. In this context, it follows that SFP really is the correct (tractable) subclass of Nash to consider,
even for single losses. Further investigation into convergence guarantees to a larger class of Nash, through
more involved means than Ostrowski, is left for future work.

For multiple losses, H is not symmetric and NL can fail, as demonstrated in the cyclic game. Formally,

F (x) = x− αξ(x)

and H = ∇ξ is not guaranteed to have positive eigenvalues at stable fixed points, even if H is invertible.
Indeed, the cyclic game with L1 = xy = −L2 has an SFP at (0, 0) where

H =

 0 1

−1 0


is positive semi-definite and invertible – but antisymmetric and therefore has pure imaginary eigenvalues.
Although the conditions in Ostrowski’s theorem are sufficient but not necessary, this yields theoretical insight
into why simultaneous GD fails for multiple losses. In the next sections, we will investigate second-order
algorithms given by

F (x) = x− αXξ(x)

for some matrix X . The following proposition will help establish local convergence of these methods.

Proposition 3.2. Assume x̄ is a fixed point of a differentiable game such that

XH(x̄)

is positive stable. Then the iterative procedure

F (x) = x− αXξ(x)

converges locally to x̄ for small enough α > 0.

Proof. Since x̄ is a fixed point, we have ξ(x̄) = 0 and so

∇[Xξ](x̄) = ∇X(x̄)ξ(x̄) +X(x̄)∇ξ(x̄) = XH(x̄)

is positive stable. As in the derivation (†) for single losses, it follows that

∇F (x̄) = I − α∇[Xξ](x̄)

has eigenvalues in the unit circle for small α > 0. Since x̄ is also a fixed point of F , we are done by
Ostrowkski’s Theorem.
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3.2 Consensus Optimization

As introduced in Section 2.3, CO is given by

F (θ) = θ − αXξ(θ)

where
X = (I + γH

ᵀ
) .

Theorem 3.3. Assume H is invertible and positive semi-definite. Then

(I + γH
ᵀ
)H

is positive stable for all γ > 0.

Proof. We have
u
ᵀ
(I + γH

ᵀ
)Hu = u

ᵀ
Hu+ γ‖Hu‖2 ≥ γ‖Hu‖2 > 0

since Hu 6= 0 for all non-zero u by invertibility. Hence the matrix is positive definite and in particular,
positive stable.

Corollary 3.4. CO converges locally to stable fixed points θ̄, for any γ > 0 and sufficiently small α > 0.

Proof. Since θ̄ is an SFP, it is a fixed point and H(θ̄) � 0 invertible. We are done by Proposition 3.2 and the
Theorem above.

The main result in [Mes] is that CO converges locally to Nash equilibria in two-player zero-sum games. In
this subset of general games, this seems stronger than our result concerned only with SFP. This appearance
is misleading. In a two-player zero sum game, L1 = −L2 and thus

H =

 ∇11L
1 ∇12L

1

−∇21L
1 ∇22L

2

 .

Since∇21L
1 = (∇12L

1)
ᵀ, the symmetric part is

S =

∇11L
1 0

0 ∇22L
2

 .

If θ̄ is a Nash equilibrium then ξ(θ̄) = 0 and ∇iiLi(θ̄) � 0 for both players by Proposition B.1. It follows
immediately that S(θ̄) � 0 since

u
ᵀ
Su = u

ᵀ
1∇11L

1u1 + u
ᵀ
2∇22L

2u2 ≥ 0

for any non-zero real vector u = (u1, u2)
ᵀ. It is not necessarily true that θ̄ is an SFP since positive semi-

definiteness may not hold in a neighbourhood, see Remark 2.4. Nonetheless, local convergence holds exactly
as in the proof above since only H(θ̄) � 0 is assumed for Ostrowski’s Theorem to apply. Hence local
convergence to all Nash holds in two-player zero-sum games.
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Remark 3.5. One might ask why SFP are defined to have H � 0 in a neighbourhood, if this assumption is
more than necessary for local convergence. This definition was chosen because SFP would not be subsets of
Nash equilibria otherwise, as discussed previously and exemplified in Remark 2.5.

We conclude that a minor variation on the theorem above gives local convergence to all Nash equilibria in
two-player zero-sum games. As such, this section provides strictly stronger results than [Mes], applying
to all differentiable games. On the other hand, our extension is a natural generalisation of the arguments
presented in [Mes], with little difference in proof strategy. This will not be true of the next sections, where
the unified framework of fixed-point iterations will bear genuinely new consequences.

3.3 Symplectic Gradient Adjustment

SGA is given by
F (θ) = θ − αXξ(θ)

where
X = (I + λA

ᵀ
) .

Theorem 3.6. Assume H is invertible and positive semi-definite, with antisymmetric part A. Then there
exists ε > 0 such that

(I + λA
ᵀ
)H

is positive stable for all 0 < λ < ε.

Proof. The proof of this result is inspired from [Bal, Th. 5]. First let S be the symmetric part of H , which
has positive real eigenvalues σmax ≥ · · · ≥ σmin by Propositions A.4 and A.7. Define the additive condition
number of S as κ = σmax − σmin ≥ 0. Then [Bal, Th. 5] states that

〈SGA,∇H〉 > 0

for all 0 < λ < 4/κ, noting that ε := 4/κ ∈ (0,∞]. Equivalently,

〈SGA,∇H〉 = 〈(I + λA
ᵀ
)ξ,H

ᵀ
ξ〉

= ξ
ᵀ
H(I + λA

ᵀ
)ξ > 0 .

We would like to prove the stronger statement

u
ᵀ
H(I + λA

ᵀ
)u > 0

for all non-zero real vectors u. This would prove positive definiteness of H(I + αA
ᵀ
) and hence positive

stability of (I+αA
ᵀ
)H , see further down. Crucially, the proof of [Bal, Th. 5] does not rely on any properties

of the specific vector ξ, and can easily be extended by replacing u everywhere. Details can be found in [Bal,
App. B] involving the explicit bound 4/κ, but we provide intuition for why this holds with a short sketch.
First decompose

u
ᵀ
H(I + λA

ᵀ
)u = u

ᵀ
Hu+ λu

ᵀ
HA

ᵀ
u

35



3.3. SYMPLECTIC GRADIENT ADJUSTMENT

and notice that uᵀHu > 0 implies

u
ᵀ
H(I + λA

ᵀ
)u = u

ᵀ
Hu+O(λ) > 0

for small λ. Otherwise, uᵀHu = 0 = u
ᵀ
Su and by Cholesky decomposition, there exists a matrix T such

that S = T
ᵀ
T . Hence 0 = u

ᵀ
Su = ‖Tu‖2, implying Tu = 0 and in turn Su = 0. Now H is invertible so

Hu = Au+ Su = Au 6= 0, and we obtain

u
ᵀ
H(I + λA

ᵀ
)u = λu

ᵀ
HA

ᵀ
u = λu

ᵀ
(S +A)A

ᵀ
u = ‖Au‖2 > 0

for all λ > 0, since uᵀS = u
ᵀ
S
ᵀ

= (Su)
ᵀ

= 0. In both cases, we obtain

u
ᵀ
H(I + λA

ᵀ
)u > 0

for λ > 0 small enough. This can be extended uniformly in u to obtain a bound ε, as demonstrated in the
proof of Theorem 3.12. Alternatively, an explicit bound ε = 4/κ is obtained through the argument in [Bal,
App. B]. Either way, we conclude that

u
ᵀ
H(I + λA

ᵀ
)u > 0

for all non-zero u and 0 < λ < ε. Hence H(I + λA
ᵀ
) is positive definite for such λ, and in particular

positive stable. Any matrices AB and BA have identical eigenvalues by Proposition A.11, so (I + λA
ᵀ
)H

is also positive stable for 0 < λ < ε.

Corollary 3.7. SGA converges locally to stable fixed points θ̄, for sufficiently small λ, α > 0.

Proof. Since θ̄ is an SFP, it is a fixed point and H(θ̄) � 0 invertible. We are done by Proposition 3.2 and the
Theorem above.

Remark 3.8. This corollary, though dependent on an adaptation of [Bal, Th. 5], is a far stronger result. The
latter states only that there exists ε > 0 such that

〈SGA,∇H〉 > 0

for all 0 < λ < ε in neighbourhoods of SFP, which is interpreted as ‘SGA points in the same direction
as ∇H’. As mentioned in Section 2.3.1, ∇H points in the direction of fixed points since following this
gradient minimisesH = 1

2‖ξ‖
2. In particular,H points towards SFP in their neighbourhoods, and moreover

converges locally to them. The intuition behind [Bal, Th. 5] is that SGA points in the same direction as∇H,
which is locally convergent. But this is not enough to prove local convergence of SGA in itself! Figure 3.1
clarifies this visually, by noting that∇H may point in the direction of SFP while not pointing at SFP, which
may lead to SGA pointing away from SFP.
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θ̄
∇H

SGA

θ

Figure 3.1: Illustration where ∇H points towards the SFP θ̄, SGA
points in the same direction asH, but SGA does not point towards θ̄.

Nonetheless, it happens that∇H is precisely the direction for which the idea above does hold – provided

〈SGA,∇H〉 = 〈(I + λA
ᵀ
)ξ,H

ᵀ
ξ〉 = ξ

ᵀ
H(I + λA

ᵀ
)ξ > 0

holds for all non-zero vectors u, not just ξ. Indeed, the fact that ∇H = H
ᵀ
ξ involves the Hessian is crucial

and yields positive definiteness of
H(I + λA

ᵀ
) ,

from which we obtain positive stability of (I + λA
ᵀ
)H . Again, pointing in the right direction is not really

the fundamental component here, since the inequality must hold for all u. After discussion, the authors of
[Bal] were not aware of this and thus ‘lucky’ in their choice of H as the quantity to follow. Regardless, our
result achieves rigorous local convergence to SFP.

Remark 3.9. What would be sufficient for local convergence is truly pointing towards θ̄, namely

〈SGA, (θ̄ − θ)〉 > 0

in neighbourhoods of θ̄, a much stronger condition related to local monotonicity. This approach is closer to
variational inequalities, a technique reducing the problem of finding Nash equilibria to a solution of some
functional inequality. This topic is well reviewed in [Scu], and can provide stronger results of global con-
vergence if applicable. Unfortunately we found these methods not to apply in general-sum n-player games,
since the assumptions required to obtain monotonicity are far too strong. For instance, [Scu] immediately
make the “blanket assumption that the [loss] functions [Li] are [...], as a function of [θi] alone, convex”.
This fails to apply in general games, and it seems difficult to obtain monotonicity even with weaker assump-
tions. Variational inequalities may provide global guarantees in some interesting sub-classes of games, but
we chose the local approach of fixed-point iterations for a more successful treatment of the general problem.

3.4 Symmetric Lookahead

Recall that (asymmetric) lookahead was introduced in Section 2.4.1 as best-response to opponent learning
given by a gradient direction

(I − αHo)ξ .

Symmetric lookahead (SLA) is a variant which we discovered, and have not encountered in the literature.
The algorithm achieves local convergence, while the proof is suprisingly simple. We derive the gradient
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adjustment and results before moving on to lookahead. Instead of best-response to opponent learning, each
agent responds to all agents learning, including oneself. This is a little unintuitive since the agent makes an
update based on their own predicted update, but has a natural convergence proof which fails for lookahead.
Formally, agent 1 minimises

L1(θ1 − α∇1L
1(θ̂1, θ̂2), θ2 − α∇2L

2(θ̂1, θ̂2))

with respect to θ1, where θ̂1, θ̂2 are the current parameters. Using stop-gradients, this is equivalent to min-
imising

L1(θ1 − α⊥∇1L
1, θ2 − α⊥∇2L

2) .

After first-order Taylor expansion, this is approximately given by

L1 − α
[
∇1L

1 · ⊥∇1L
1 +∇2L

1 · ⊥∇2L
2
]
.

Differentiating with respect to θ1, the gradient adjustment is

∇1L
1 − α

[(
∇11L

1
)ᵀ
∇1L

1 +
(
∇21L

1
)ᵀ
∇2L

2
]

= ∇1L
1 − α

[
∇11L

1∇1L
1 +∇12L

1∇2L
2
]
.

The derivation is similar for agent 2. Putting everything together, we have

SLA =

∇1L
1 − α

[
∇11L

1∇1L
1 +∇12L

1∇2L
2
]

∇2L
2 − α

[
∇22L

2∇2L
2 +∇21L

2∇1L
1
]


= ξ − α

∇11L
1 ∇12L

1

∇21L
2 ∇22L

2


∇1L

1

∇2L
2


= ξ − αHξ = (I − αH)ξ .

The only difference is that (asymmetric) lookahead fails to incorporate diagonal blocks of H , making the
proof substantially harder than the symmetric case. The iterative procedure for SLA is given by

F (θ) = θ − αXξ(θ)

where
X = (I − αH) .

Theorem 3.10. Assume H is invertible and positive semi-definite. Then there exists ε > 0 such that

(I − αH)H

is positive stable for all 0 < λ < ε.
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Proof. Let λk = ak + ibk be the eigenvalues of H . Since H � 0, we have ak ≥ 0 for all k. It follows that

(I − αH)H

has eigenvalues
(1− αak − iαbk)(ak + ibk)

with real part
rk = (1− αak)ak + αb2k .

If ak > 0 then
rk ≥ ak − αa2

k > 0

for 0 < α < 1/ak. If ak = 0 then H invertible implies bk 6= 0, and thus

rk = αb2k > 0

for all α > 0. We conclude that (I − αH)H is positive stable for all

0 < α < min
j
{1/aj}

as required.

Corollary 3.11. Symmetric lookahead converges locally to stable fixed points θ̄, for sufficiently small α > 0.

Proof. Since θ̄ is an SFP, it is a fixed point and H(θ̄) � 0 invertible. We are done by Proposition 3.2 and the
Theorem above.

3.5 Lookahead

(Asymmetric) lookahead is given by
F (θ) = θ − αXξ(θ)

where
X = (I − αHo) .

Theorem 3.12. Let H be invertible and positive semi-definite, and Ho the submatrix of off-diagonal blocks.
Then there exists ε > 0 such that

G = (I − αHo)H

is positive stable for all 0 < α < ε.

Remark 3.13. Note thatGmay not be positive definite, although one can show this is true for 2×2 matrices
and perhaps also 3× 3. This fails one dimension up, exemplified by the matrix

H =



9 −4 −3 −3

−2 1 2 1

−3 0 1 0

−3 1 2 1


.
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By direct computation (symbolic in α), one can show thatG = (I−αHo)H always has positive eigenvalues
for small α > 0, whereas its symmetric part always has a negative eigenvalue with magnitude in the order of
α. As such, a proof involving lower bounds on matrix-vector products (resembling that for SGA) will fail.
This makes the result all the more interesting, but more involved. Central to the proof is a novel similarity
transformation technique we discovered, and have not found in the literature.

Proof. We cannot study the eigenvalues of G directly, since there is no necessary relationship between
eigenpairs of H and Ho. In the aim of using analytical tools, the trick is to find a positive definite matrix
which is similar to H , thus sharing the same positive eigenvalues. First define

G1 = (I + αHd)H and G2 = −αH2 ,

where Hd is the sub-matrix of diagonal blocks,and rewrite

G = (I − αHo)H = (I − α(H −Hd))H = (I + αHd)H − αH2 = G1 +G2 .

Note that Hd is block diagonal with symmetric blocks ∇iiLi � 0, so (I + αHd) is symmetric and positive
definite for all α ≥ 0. In particular its principal square root

M = (I + αHd)
1/2

is unique and invertible. Now note that

M−1G1M = M−1M2HM = M
ᵀ
HM ,

which is positive semi-definite since

u
ᵀ
M
ᵀ
HMu = (Mu)

ᵀ
H(Mu) ≥ 0

for all non-zero u. In particular M provides a similarity transformation which eliminates Hd from G1 while
simultaneously delivering positive semi-definiteness. We can now prove that

M−1GM = M−1G1M +M−1G2M

is positive definite, establishing positive stability of G by similarity. Let m = d − 1 where d is the vector
space dimension, namely H ∈ Rd×d. Take any unit vector u ∈ Sm and consider

u
ᵀ
M−1GMu .

First note that a Taylor expansion of M in α yields

M = (I + αHd)
1/2 = I +O(α)

and
M−1 = (I + αHd)

−1/2 = I +O(α) .

This implies in turn that
u
ᵀ
M−1GMu = u

ᵀ
Gu+O(α) .

There are two cases to distinguish.
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(i) If uᵀHu > 0 then

u
ᵀ
M−1GMu = u

ᵀ
Gu+O(α)

= u
ᵀ
G1u+O(α)

= u
ᵀ
Hu+O(α) > 0

for sufficiently small α.

(ii) Otherwise, uᵀHu = 0 = u
ᵀ
Su and by Cholesky decomposition, there exists a matrix T such that

S = T
ᵀ
T . In particular 0 = u

ᵀ
Su = ‖Tu‖2 implies Tu = 0, and in turn Su = 0. Since H is

invertible and u 6= 0, we have 0 6= Hu = Au and so ‖Au‖2 > 0. It follows that

−αuᵀH2u = −αuᵀ(Sᵀ −Aᵀ)(S +A)u = αu
ᵀ
A
ᵀ
Au = α‖Au‖2 > 0 .

Using positive semi-definiteness of M−1G1M ,

u
ᵀ
M−1GMu = u

ᵀ
M−1G1Mu+ u

ᵀ
M−1G2Mu

≥ −αuᵀM−1H2Mu

= −αuᵀH2u+O(α2)

= α‖Au‖2 +O(α2) > 0

for α > 0 small enough.

We conclude that for any u ∈ Sm there is εu > 0 such that

u
ᵀ
M−1GMu > 0

for all 0 < α < εu, where g(α, u) = u
ᵀ
M−1GMu is a function g : R+ × Sm → R with Sm compact. By a

topological argument in Proposition B.3, this can be extended uniformly with some ε > 0 such that

u
ᵀ
M−1GMu > 0

for all u ∈ Sm and 0 < α < ε. By Proposition A.3, M−1GM is positive definite for all 0 < α < ε and thus
G is positive stable for α in the same range, by similarity.

Corollary 3.14. LA converges locally to stable fixed points θ̄, for sufficiently small α > 0.

Proof. Since θ̄ is an SFP, it is a fixed point and H(θ̄) � 0 invertible. We are done by Proposition 3.2 and the
Theorem above.

Though local convergence is a strong theoretical result, how small does α really need to be? Unlike the
proofs for SGA and SLA, we are not able to produce an explicit bound on ε in Theorem 3.12 because the
similarity transformation through M fails to yield a tractable expression in α. Nonetheless we can generate
random matricesH and find ε numerically, by standard bisection methods. This is of interest to practitioners,
to produce an estimate on what α to choose and consequently, how fast the algorithm may converge. It is all
the more important since the same ε will ensure convergence of SOS, the algorithm we propose in Chapter 4.
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We generate 106 random invertible matrices H � 0, with number of agents 2 ≤ n ≤ 5 and each dimension
1 ≤ di ≤ 4 chosen uniformly at random. Each matrix H thus has dimension 2 ≤ d ≤ 20 (multinomially
distributed). The generation procedure is given in Algorithm 1, and the results are in Table 3.1. We find
0 < ε ≤ 10 such that (I − αHo)H is postive stable for all 0 < α < ε using the bisection method to find
roots of the smallest eigenvalue, and more bisection/random sampling to check that no smaller roots exist
with high probability. We cap ε ≤ 10 since some upper bound needs to be chosen, while too large a bound
might strongly skew the mean and standard deviation.

Algorithm 1: Random generation of invertible, positive semi-definite matrices.

1 Generate 2 ≤ n ≤ 5 and 1 ≤ di ≤ 4 for each 1 ≤ i ≤ n, uniformly at random. Let d =
∑

i di.
2 Generate a random integer 0 ≤ k < d and random matrices M ∈ Rd×(d−k), N ∈ Rd×d with entries

between −1 and 1, uniformly at random.
3 Define S = M

ᵀ
M and A = N −Nᵀ, so that S � 0 and A antisymmetric.

4 Return H = S +A.

We prove that Algorithm 2 produces H � 0 invertible with probability one. First note that H � 0 since
S � 0, by Proposition A.4. If H is singular then Hu = 0 for some non-zero u, hence by decomposition
Hu = 0 for some real non-zero u also. Then 0 = u

ᵀ
Hu = u

ᵀ
Su = ‖Mu‖2, implying Mu = 0 and thus

Su = 0. Hence Hu = Su + Au = Au = 0, so A is singular. Now A is generated uniformly at random in
[−1, 1]d×d, so {A | det(A) = 0} is a hyperplane of measure zero and H is invertible with probability 1.

Note that M is not always chosen to be in Rd×d, in order to produce a more realistic sample where S is
not always positive definite. Notice also that every symmetric matrix S ≥ 0 has Cholesky decomposition
S = M

ᵀ
M , and every antisymmetric matrix A can be written as A = N − Nᵀ, helping to produce a fair

sample. We do not however claim that the distribution of H is uniform in the space of invertible, positive
semi-definite matrices with entries in some bounded domain.

Min Max Mean Median Std

0.03 10.00 0.62 0.19 1.64

Table 3.1: Statistics on ε across 106 random matrix generations.

Overall, we find that α can be chosen reasonably large. More precisely, taking α ≈ 10−1 is likely to
guarantee convergence, since the mean and median are larger and the minimum is 3 · 10−2.

Remark 3.15. For two-player, two-action, bimatrix games as in [Zha], the theorem above can be proved in
a few lines. Two-player two-action means that H is a 2× 2 matrix, and we do not make use of the bimatrix
assumption. If H has a pure imaginary eigenvalue then it has two, so Tr(H) = Tr(S) = 0 and thus S has
only zero eigenvalues, hence S = 0. Then G = (I − αH)H which is positive stable as easily shown for
symmetric lookahead. Otherwise, H has positive eigenvalues and so does a minor perturbation. This proves
a subset of [Zha, Th. 1], namely replacing Nash by SFP and global by local convergence. Our result in this
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restricted case is therefore weaker, but takes four lines instead of pages. Unfortunately this short argument
cannot be generalised to d × d matrices, since H may have pure imaginary eigenvalues without implying
S = 0. Our result nonetheless applies to any differentiable game, for which nothing is known in the literature
to the best of our knowledge.

3.6 Non-Convergence

Though local convergence to SFP is guaranteed, can we say that each algorithm only converges to SFP?
First notice that each of the four above is given by Xξ, where X is a perturbation of the identity by some
parameter λ, γ or α:

XCO = I + γH
ᵀ

XSLA = I − αH
XSGA = I + λA

ᵀ
XLA = I − αHo .

The iterative procedure is given by
θk+1 = θk − αXξ(θk) ,

where Xξ is a continuous function. If θk converges to a point θ̄ then taking limits on both sides implies

θ̄ = θ̄ − αXξ(θ̄) ,

and so Xξ(θ̄) = 0. If X is assumed invertible at θ̄ then ξ(θ̄) = 0, so θ̄ is a fixed point of the game.
The invertibility assumption is a mild one, similar to that of Hessian invertibility at stable fixed points, see
Remark 2.12. For instance,

XLA = I − αHo

is invertible iff 1/α is not an eigenvalue ofHo, which occurs almost surely if (arbitrarily small) noise is added
to α at initialisation. This is equally true of SLA and CO. For SGA this holds even without the presence of
noise since the eigenvalues ia of A are pure imaginary. It follows that

XSGA = I + λA
ᵀ

has non-zero eigenvalues 1 + iλa. This is summarised below.

Proposition 3.16. Assume CO, SGA, SLA or LA converge to a point θ̄ with X invertible. Then θ̄ is a fixed
point of the game, namely ξ(θ̄) = 0.

Though θ̄ is a fixed point, is it necessarily stable? Recall that θ̄ is unstable iff S ≺ 0. Below we prove that
each algorithm cannot converge to an unstable fixed point, a novel contribution for all of them.

In [Bal], the argument that SGA is repelled from unstable FP goes as follows. Recall that gradient descent
on ∇H = H

ᵀ
ξ converges to a fixed point of the game, provided H is invertible at that point. This implies

that ∇H points in the direction of fixed points, though these may be unstable. The requirement is therefore

〈∇H,SGA〉 < 0
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in neighbourhoods where S ≺ 0, implying that SGA points in the opposite direction and thus away from
unstable FP. Unfortunately this does not formally prove that convergence to unstable FP is impossible, and
is prey to the same fallacy discussed above Figure 3.1. Indeed, ∇H may point towards the unstable FP θ̄
while not pointing at θ̄, making it possible for SGA to point away from ∇H while pointing towards θ̄. This
is illustrated visually in Figure 3.2 below.

θ̄
∇HSGA

θ

Figure 3.2: Illustration where ∇H points towards the unstable FP θ̄,
SGA points away from∇H, but SGA does not point away from θ̄.

Nonetheless, the condition imposed in [Bal] holds for each algorithm above, provided the parameter (written
α without loss of generality) is small enough. Indeed we have ξᵀHξ < 0 at θ̄ and so

〈∇H, Xξ〉 = ξ
ᵀ
Hξ +O(α) < 0

for sufficiently small α. We provide a novel and rigorous argument for non-convergence to unstable FP,
unknown in the literature to the best of our knowledge.

Proposition 3.17. Assume NL, CO, SGA, SLA or LA converges to a point θ̄ with random initialisation. If
α is noisy and sufficiently small then θ̄ is almost surely not an unstable fixed point.

Proof. Assume for contradiction that θ̄ is unstable and θk → θ̄ as k → ∞. We first want to prove that
θk 6= θ̄ for all k, almost surely. First note that random initialisation produces θ0 6= θ̄ with probability 1. Now
if θk = θ̄ for some smallest k ≥ 1 then

θk−1 − αξ0 = θ̄ ⇐⇒ θk−1 − θ̄ = αξ0

where at least some entry i of the LHS vector is non-zero since k is minimal. Hence

α =
(θk−1 − θ̄)i

(ξ0)i
,

occurring with probability 0 since α is initialised with noise. N is a countable set so we obtain

P

(⋃
k∈N
{θk = θ̄}

)
=
∑
k∈N

P (θk = θ̄) =
∑
k∈N

0 = 0 .

Hence θk 6= θ̄ for all k ≥ 0 almost surely. With this assumption in hand, let δk = ‖θk − θ̄‖ > 0 and by
Taylor expansion around θ̄,

ξ0(θk) = ξ0(θ̄) +∇ξ0(θ̄)(θk − θ̄) +O(δ2
k)

= XH(θk − θ̄) +O(δ2
k)

= H(θk − θ̄) +O(α) +O(δ2
k)
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where H = H(θ̄) ≺ 0 by definition of instability. For any k we obtain

‖θk+1 − θ̄‖2 = ‖θk − αξ0(θk)− θ̄‖2

=
[
θk − θ̄ − αξ0(θk)

]ᵀ [
θk − θ̄ − αξ0(θk)

]
= (θk − θ̄)

ᵀ
(θk − θ̄)− 2α(θk − θ̄)

ᵀ
ξ0(θk) +O(α2)

= ‖θk − θ̄‖2 − 2α(θk − θ̄)
ᵀ
H(θk − θ̄) +O(α2) +O(δ3

k)

> ‖θk − θ̄‖2

for α, δk > 0 sufficiently small. More precisely there exist ε, δ > 0 such that

‖θk+1 − θ̄‖2 > ‖θk − θ̄‖2

for all 0 < α < ε and 0 < δk < δ, rewritten as

δk+1 − δk > 0 .

Now note that θk → θ̄ implies δk → 0 as k →∞, so there exists N ∈ N such that δk < δ for all k ≥ N . In
particular this implies

δk′ − δk > 0

for all k′ > k ≥ N and 0 < α < ε. This is intuitively a contradiction, since the distance between θk and θ̄
should decrease as k grows, not increase. Formally, δk > 0 for all k implies that δk > ε for some ε > 0 and
k ≥ N . On the other hand, δk → 0 as k →∞ implies there exists M ∈ N such that

δk′ < ε/2

for all k′ ≥M . Taking k′ > k we obtain

δk′ − δk < ε/2− ε = −ε/2 < 0 ,

a contradiction to δk′ − δk > 0. Hence θk cannot converge to θ̄.

Inspired from results in [Lee], we later found that this proposition can be generalised to strict saddles θ̄,
namelyH(θ̄) has at least one negative eigenvalue. This is true in particular for unstable fixed points. Proving
the general result involves a much more sophisticated argument than our proof above, requiring theory from
dynamical systems. This goes beyond the purpose of this report, so we state the result without proof. The
argument is similar to [Lee, Th. 4.1], though adjustments must be made to account for second-order gradients
and our weaker assumption of local (not global) Lipschitz continuity. Our proof will appear in a paper soon
to be uploaded on the arXiv.

Proposition 3.18. Assume losses are thrice continuously differentiable and NL, CO, SGA, SLA or LA
converges to a point θ̄ with random initialisation. If α is small then θ̄ is almost surely not a strict saddle.

Note that adding noise to α is not necessary, provided loss functions are thrice continuously differentiable.
This is virtually always satisfied in machine learning.
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Remark 3.19. Assuming that S(θ̄) has a negative eigenvalue is not enough to obtain a strict saddle. For
instance,

H =

1 3

1 1


has only positive eigenvalues 1±

√
3, while its symmetric part

S =

1 2

2 1


has a negative eigenvalue−1. In this way, the general result above omits a ‘degenerate’ type of saddle which
fail to produce a negative eigenvalue in H . This is a further difficulty regarding multi-loss optimisation,
arising from the lack of Hessian symmetry. We have not found a way to generalise the result above to θ̄ such
that S(θ̄) has a negative eigenvalue. This seems impossible using dynamical systems (if not wholly untrue),
since H = ∇ξ is central to the iterative procedure while S is not.

3.7 Caveat

As discussed in Section 2.2, there is no guarantee that any of the algorithms above converge locally to Nash
equilibria, and the following example displays a failure case where divergence occurs in the absence of SFP.

Example 3.20. Recall the game given by loss functions

L1 = x2/2 + 2xy + 2y2

L2 = y2/2 + 2xy + 2x2

from Example 2.16. The gradient and Hessian are given by

ξ =

x+ 2y

y + 2x

 and H =

1 2

2 1

 .

The game is potential since we have A ≡ 0. The only fixed point is given by x = y = 0, which is a (strict)
Nash equilibrium since

∇xxL1(0, 0) = ∇yyL2(0, 0) = 1 > 0 .

On the other hand, (0, 0) is not a stable fixed point since S = H has eigenvalues 3 and −1. As such, the
game has no SFP and we have no results regarding behaviour of the algorithms above. In fact, we formally
prove below that SGA diverges in the direction (x,−x) for any learning rate, any λ and and almost-any
initial parameters, where the losses are

L1 = L2 = x2/2 > 0 .

Hence the players diverge to infinite losses as they learn, which is the worst possible behaviour.
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Proposition. For any learning rate α and almost-any initial parameters z0 = (x0, y0), SGA diverges away
from Nash to infinite losses.

Proof. Note that SGA is identical to NL since A ≡ 0. Write the eigenvectors of S as

u =

1

1

 and v =

 1

−1


with eigenvalues 3 and −1 respectively. Since they form a basis, we can write

z0 = a0u+ b0v

for some a0, b0 ∈ R. The set {au | a ∈ R} is of measure zero in R2, so we assume that b0 6= 0. NL follows
the negative of ξ, so the iterative procedure is given by

zk+1 = F (zk)

where
F (z) = z − αξ(z)

for some learning rate α > 0. Note that F is linear since ξ is linear, so a Taylor expansion around (0, 0)

gives
F (z) = F (0) + (∇F )

ᵀ
z = 0 + (I − α∇ξ)ᵀz = (I − αH)

ᵀ
z .

Writing zk = aku+ bkv and using H = S, we obtain

zk+1 = (I − αS)zk = ak(I − αS)u+ bk(I − αS)u = ak(1− 3α)u+ bk(1 + α)v .

By induction it follows that
zk = a0(1− 3α)ku+ b0(1 + α)kv

for all k. For α < 2/3, we have |1− 3α| < 1 and thus

lim
k→∞

zk = sign(b0)(∞,−∞) .

For α ≥ 2/3 the situation is even worse, since both terms blow up but the first oscillates between positive and
negative. In both cases the losses become arbitrarily positive. To conclude, SGA diverges towards infinite
losses for any learning rate α and almost-any initial parameters.

The behaviour of SLA and LA is identical to that of SGA in this example, demonstrating a strong failure case
for all of them in the absence of SFP. As discussed in Section 2.2.1, the silver lining is that each algorithm
fails only because there are terms in each loss function that are purely functions of other players’ parameters.
They are beyond each player’s control entirely, a pathological setting where I can increase my opponent’s
loss with no possible counter-play. The potential function φ disregards these terms, and the Nash equilibrium
is a saddle point of φ. It is thus ‘understandable’ for optimisation algorithms to diverge away.

This crucially does not occur for single losses, since the only term beyond one’s control is constant, which
does not affect local minima. This is one further reason behind the success of gradient descent on a single
function. For multiple losses, the only algorithm which takes into account gradients of one’s loss with respect
to opponent parameters is LOLA, yet even it can be shown to fail in this example.
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Chapter 4

Stable Opponent Shaping

CO, SGA and lookahead have strong (non-)convergence guarantees, but fail to shape opponent learning. The
opposite holds for LOLA. The aim of this chapter is to solve this catch-22 with Stable Opponent Shaping
(SOS). The idea is to interpolate between the two with a parameter p, as first introduced in Section 2.4. The
central issue is to find a criterion for choosing p such that both components are preserved.

4.1 Partial LOLA

We begin with p-LOLA, where p stands for partial. This learning scheme is given by

p-LOLA = p · LOLA + (1− p) · LA ,

interpolating from LA to LOLA from p = 0 to p = 1 respectively. Now define

LO = −αχ

as the shaping (but non-preserving) term appearing exclusively in LOLA, and recall that

LA = (I − αHo)ξ

while
LOLA = (I − αHo)ξ − αχ = LO + LA .

Then by definition,

p-LOLA = p · (LO + LA) + (1− p) · LA = p · LO + LA ,

allowing for an easy mnemonic. We write

ξp = p-LOLA

for simplicity, where ξ0 corresponds to lookahead. Another way to formulate p-LOLA is to define the
interpolated stop-gradient

⊥p := p⊥+ (1− p)I
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where I is the identity operator. Then the first p-LOLA agent optimises the modified objective

L1(θ1, θ2 − α⊥1−p∇2L
2) ,

equating the lookahead objective
L1(θ1, θ2 − α⊥∇2L

2)

at p = 0 and the LOLA objective
L1(θ1, θ2 − α∇2L

2)

at p = 1. One can recover the expression for p-LOLA by first-order Taylor expansion

L1 − α(1− p)∇2L
1 · ⊥∇2L

2 − αp∇2L
1 · ∇2L

2

and similarly for the second. The learning direction is then given by

∇1L
1 − α(1− p)∇12L

1∇2L
2 − αp

[
∇12L

1∇2L
2 +∇12L

2∇2L
1
]

=∇1L
1 − α∇12L

1∇2L
2 − αp∇12L

2∇2L
1

or in vector form,
(I − αHo)ξ − pαχ = p · LO + LA

as above. We obtain an algorithm trading between stability and exploitation, as a function of p. Since
p-LOLA is a perturbation of lookahead, whose gradient is positive stable, the gradient of p-LOLA is also
positive stable for p small enough. However this fails to imply that p-LOLA converges locally to SFP, since
Ostrowski’s Theorem crucially relies on preservation of fixed points. For any fixed point θ̄,

p-LOLA(θ̄) = −pαχ(θ̄) 6= 0

for any p > 0 in general, so convergence cannot be guaranteed. If p is very small then fixed points will almost
be preserved and convergence guaranteed... But for very small p, the algorithm will be virtually identical to
LA, losing the whole purpose of interpolation and LOLA’s exploitation properties.

Instead, one should find a choice criterion for p such that both shaping and local convergence are preserved.
The criterion should allow p to be large whenever possible, while strict enough to provably converge.

4.2 SOS : Rescuing LOLA

The first part of our proposal is to choose p such that p-LOLA points in the same direction as LA, which is
known to converge. This will not be enough to guarantee convergence of p-LOLA by itself, but ensures that
convergence to new (potentially poor) fixed points cannot occur. In particular this will be shown to prevent
failure in the humility game. Criterion 1 is formally given by

〈ξp, ξ0〉 ≥ 0 ,

which is always possible since
〈ξp, ξ0〉 = p〈LO, ξ0〉+ ‖ξ0‖2 > 0
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4.2. SOS : RESCUING LOLA

for p > 0 small enough if ξ0 6= 0, and
〈ξp, ξ0〉 = 0

otherwise, which virtually never occurs in practice. If 〈LO, ξ0〉 ≥ 0 then 〈ξp, ξ0〉 ≥ 0 automatically, so one
should choose p = 1 to obtain maximal exploitation. Otherwise,

p = min

{
1,
−a‖ξ0‖2

〈LO, ξ0〉

}
for some hyperparameter 0 < a < 1 yields

〈ξp, ξ0〉 = p〈LO, ξ0〉+ ‖ξ0‖2

≥ −a‖ξ0‖2 + ‖ξ0‖2

= ‖ξ0‖2(1− a) > 0 .

This criterion ensures that p-LOLA always points in the same direction as lookahead. The hyperparameter
a governs how stable or exploitative we want our agent to be, where a close to 0 yields closest behaviour to
lookahead. However, as discussed in Section 3.3, local convergence of an algorithm does not follow from
pointing in the same direction as some convergent algorithm. A direct proof using Ostrowski’s Theorem
is also unfeasible since χ does not inherit useful properties from the definition of SFP, while ξ and H do.
Nonetheless we were not able to find a non-convergent example despite many adversarial attempts.

We propose a second part to the criterion, thanks to which local convergence holds. The idea is to scale
p by a function of ‖ξ‖ if ‖ξ‖ is small enough. This will decrease p in neighbourhoods of SFP, pushing
p-LOLA arbitrarily close to lookahead and promising convergence. More precisely, take a hyperparameter
0 < b < 1 and define p2 = ‖ξ‖2 if ‖ξ‖ < b, otherwise p2 = 1. The size of ξ is squared only for purposes
of differentiability, as the norm function is not differentiable at the origin. Choosing p1 and p2 according to
criteria 1 and 2, the dual criterion is obtained by taking p = min{p1, p2}. This is summarised in Algorithm 2.

Algorithm 2: Stable Opponent Shaping
input : Losses L1, . . . , Ln, learning rate α, hyperparameters 0 < a, b < 1.
output: Parameters θ, hoping to minimise losses simultaneously.

1 Initialise θ randomly.
2 while not done do
3 Compute ξ0 = (I − αHo)ξ(θ) and LO = −αχ(θ).

4 if 〈LO, ξ0〉 > 0 then p1 = 1 else p1 = min
{

1, −a‖ξ0‖
2

〈LO,ξ0〉

}
5 if ‖ξ‖ < b then p2 = ‖ξ‖2 else p2 = 1

6 Let p = min{p1, p2} and compute ξp = p · LO + ξ0.
7 θ ← θ − αξp.
8 end

SOS incorporates two hyperparameters 0 < a, b < 1, though local convergence is crucially independent from
them. Instead, a and b are responsible for more/less exploitation and faster/slower convergence respectively.
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SOS preserves fixed points of the game, unlike LOLA. If ξ(θ̄) = 0 then p = min{p1, 0} = 0 and so

ξp = ξ0 = (I − αHo)ξ(θ̄) = 0

as required. This is not only a theoretical guarantee but a practical one, in that ξ small implies (I − αHo)ξ

small and p small, hence ξp is also small. This would not have been true in the previous criterion, since one
can have p1 = 1 even for ξ extremely small, so that

ξp = ξ1 = (I − αHo)ξ − αχ

which may be large if χ is large. Note that only criterion 2 is used in showing preservation of fixed points,
though criterion 1 will be equally crucial in obtaining convergence only to fixed points.

Remark 4.1. On the practical end, SOS is only slightly slower than LOLA or SGA, the difference being lin-
ear in d (the dimension of θ). The same computations of ξ0 and LO are involved for LOLA, but the criterion
for choosing p adds a minor cost of three inner products at each learning step, namely 〈LO, ξ0〉, 〈ξ0, ξ0〉 and
〈ξ, ξ〉. Each inner product has linear running time in d. Numerical results on Algorithm 2’s running time
will be provided for iterated games in the next chapter, see Table 5.3.

Note also that Ho should not be computed separately from ξ, which would have O(d2) time complexity.
Instead we compute Hoξ through the following trick. Without loss of generality, the entries of Hoξ will be
given by a sum of terms

∇ijLi∇jLj .

Instead of computing∇ijLi in squared running time, first compute

∇jLi · ⊥∇jLj

for each j, where ⊥ is the stop-gradient operator. This has O(dj) complexity for each j and thus O(d)

overall. Then compute the required gradient

∇i(∇jLi · ⊥∇jLj) = (∇jiLi)
ᵀ∇jLj = ∇ijLi∇jLj

for each i, again totalling O(d) running time. We can perform this to obtain Hoξ in linear time O(d)

accordingly. A similar trick works for χ.

4.3 Theoretical Guarantees

Theorem 4.2. SOS converges locally to SFP for any a, b ∈ (0, 1) and α > 0 sufficiently small.

Proof. Though the criterion is dual, we will only use the second part. More precisely,

p = min{p1, p2} ≤ p2 = ‖ξ‖

if ‖ξ‖ < b. The aim is to show that if θ̄ is an SFP then∇ξp(θ̄) is positive stable for small α, using Ostrowski
to conclude as usual. The first problem we face is that ∇ξp does not exist everywhere, since p(θ) is not a
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continuous function. We can nonetheless prove that ξp is continuously differentiable in a neighbourhood of
θ̄, as follows. First note that ξ(θ̄) = 0 so there is a neighbourhood U of θ̄ such that

‖ξ(θ)‖2 < b2

for all θ ∈ U . In particular p2(θ) = ‖ξ(θ)‖2 by definition of criterion 2. We want to show that p(θ) = p2(θ)

near θ̄, or equivalently p1(θ) ≥ p2(θ). Assume for contradiction that all neighbourhoods have p1(θ) < p2(θ)

for some θ. Then

p1(θ) =
−a‖ξ0‖2

〈LO, ξ0〉

since otherwise p1(θ) = 1 > b2 > p2(θ) according to criterion 1. Now by Theorem 3.12 there exists ε > 0

such that
(I − αHo)H(θ̄)

is positive stable for all 0 < α < ε, and by Cauchy-Schwartz we have

−a‖ξ0‖2

〈LO, ξ0〉
≥ a‖ξ0‖
‖LO‖

.

By boundedness of U there exists k > 0 such that ‖LO(θ)‖ = α2‖χ(θ̄)‖ < k for all θ ∈ U and α < ε,
hence

p1 =
−a‖ξ0‖2

〈LO, ξ0〉
≥ a‖ξ‖

k
> ‖ξ‖2 = p2

for all ‖ξ‖ < a/k. Finally there is a sub-neighbourhood V ⊂ U such that ‖ξ(θ)‖ < a/k for all θ ∈ V , in
which

p1(θ) =
−a‖ξ0‖2

〈LO, ξ0〉
> p2(θ) .

This is a contradiction, hence p(θ) = p2(θ) = ‖ξ(θ)‖2 for all θ ∈ V . This is a continuously differentiable
function in V , with gradient

∇p(θ̄) = 2H
ᵀ
ξ(θ̄) = 0

at the SFP. Note that p(θ̄) = ‖ξ(θ̄)‖2 = 0, so we obtain

∇ξp(θ̄) = (I − αHo)H(θ̄)− α∇p(θ̄)χ(θ̄)− αp(θ̄)∇χ(θ̄) = (I − αHo)H(θ̄)

which is identical to lookahead. This is positive stable for all 0 < α < ε, and θ̄ is a fixed point of the iteration
since

ξp(θ̄) = (I − αHo)ξ(θ̄)− αp(θ̄)χ(θ̄) = 0 .

We conclude by Ostrowski that SOS converges locally to SFP for any a, b ∈ (0, 1) and α sufficiently small.

Remark 4.3. Convergence is achieved provided α is as small as required in lookahead, since the same ε is
used in the proof. The same numerical experiments provided for lookahead therefore hold. Only the radius
of convergence will be altered from lookahead to SOS, controlled by b. If b is small then the radius may be
smaller, since p is only scaled down when ‖ξ‖ < b.
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If the second part of the criterion is discarded in the proof, why not remove it in the first place? The answer is
that arrogant behaviour may still be displayed if p-LOLA does not point in the same direction as lookahead,
despite preservation of fixed points. More precisely, note that local convergence to SFP does not prevent an
algorithm from converging to non-fixed points. Criterion 1 prevents this from happening.

Proposition 4.4. If SOS converges to a point θ̄ with I − αHo invertible then θ̄ is a fixed point of the game,
namely ξ(θ̄) = 0.

The invertibility assumption is identical to that for lookahead, see Proposition 3.16, occurring with probabil-
ity 1 if (arbitrarily small) noise is added to α. The proof for CO/SGA/SLA/LA was trivial since each of them
preserved fixed points in the first place, with the converse being a simple matter of invertibility. For LOLA
the proposition above would be untrue, since the shaping term involves χ instead of ξ. The first criterion
guarantees this nonetheless, though the proof is more involved.

Proof. The algorithm is an iterative procedure given by

θk+1 = F (θk) = θk − αξp(θk) .

If θk → θ̄ as k →∞ then taking limits on both sides of the iteration yields

θ̄ = θ̄ − α lim
k→∞

ξp(θk)

and so lim
k
ξp(θk) = 0, omitting k →∞ for convenience. It follows by continuity that

ξ0(θ̄) + lim
k
p(θk)LO(θ̄) = 0 ,

noting that p(θ) is not a continuous function. Assume for contradiction that ξ0(θ̄) 6= 0.

(i) Assume 〈LO, ξ0〉(θ̄) ≥ 0. Note that limk p(θk) ≥ 0 since p(θ) ≥ 0 for all θ, and so

〈lim
k
ξp(θk), ξ0(θ̄)〉 = lim

k
p(θk)〈LO, ξ0〉(θ̄) + ‖ξ0(θ̄)‖2 > 0 .

This is a contradiction since limk ξp(θk) = 0.

(ii) Otherwise, 〈LO, ξ0〉(θ̄) < 0 and hence 〈LO, ξ0〉(θ) < 0 in a neighbourhood. In particular there exists
N ∈ N such that

〈LO, ξ0〉(θk) < 0

for all k ≥ N . In particular

p1(θk) = min

{
1,
−a‖ξ0(θk)‖2

〈LO, ξ0〉(Tk)

}
for all k ≥ N . Now notice that

lim
k
p(θk) = lim

k
min

{
1,
−a‖ξ0(θk)‖2

〈LO, ξ0〉(Tk)
, p2(θk)

}
,

which implies

lim
k
p(θk) ≤ lim

k

−a‖ξ0(θk)‖2

〈LO, ξ0〉(Tk)
=
−a‖ξ0(θ̄)‖2

〈LO, ξ0〉(θ̄)
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by Proposition B.5 and continuity. Finally we conclude

〈lim
k
ξp, ξ0〉(θk) = lim

k
p(θk)〈LO, ξ0〉(θ̄) + ‖ξ0(θ̄)‖2 ≥ −a‖ξ0(θ̄)‖2 + ‖ξ0(θ̄)‖2 > 0

for any a ∈ (0, 1), a contradiction.

In both cases a contradiction is obtained, hence ξ0(θ̄) = 0 = (I −αHo)ξ(θ̄). By assumption of invertibility,
we obtain ξ(θ̄) = 0 as required.

Together, criteria 1 and 2 fulfil distinct but complementary requirements of a strong algorithm. The second
guarantees preservation of fixed points and local convergence to SFP, while the first ensures its ‘converse’:
SOS can only converge to fixed points. Finally p-LOLA is repelled by unstable FP for any p, through an
argument identical to Proposition 3.17.

Proposition 4.5. Assume p-LOLA converges to a point θ̄ with random initialisation, noisy α and any p ∈
[0, 1]. Then θ̄ is not an unstable fixed point with probability 1, for α sufficiently small.

Proof. Note that
ξp = ξ − αHoξ − pαχ = ξ +O(α)

for any p ∈ [0, 1]. Reproducing the proof for Proposition 3.17, convergence to unstable FP produces a
contradiction with probability 1, for α sufficiently small.

Note that the result above holds for any p, applying in particular to LOLA. This is a novel result. As in
Proposition 3.18, this can be generalised to non-convergence to strict saddles θ̄. This is again stated without
proof for now. Combining forces into SOS, we obtain the following summary.

Corollary 4.6. For any a, b ∈ (0, 1), α > 0 noisy and sufficiently small, SOS converges locally to SFP. If it
converges to a point θ̄ then θ̄ is almost surely a fixed point of the game, and cannot be a strict saddle if losses
are thrice continuously differentiable.

Remark 4.7. The reader may be concerned that SOS is not framed from the perspective of each agent,
instead incorporating a criterion governed by the global learning direction. This can easily be resolved by
the following variant. Each agent applies a local version of the criterion to obtain their component pi of the
vector p, so that

ξp = p ◦ LO + ξ0

where ◦ is componentwise multiplication. The criterion is simply an agentwise version of SOS: pi1 is chosen
such that 〈ξip, ξi0〉 > 0 in the same way with hyperparameter ai, and pi2 = ‖ξi‖2 if ‖ξi‖ < bi with hyperpa-
rameter bi. Note that LOi, ξi0, ξ

i are simply the ith component of the corresponding vectors, while a and b are
now hyperparameter vectors whose entries must satisfy 0 < ai, bi < 1. Finally we choose pi = min{pi1, pi2}
for each i. Imposing these local conditions is stronger than SOS, since they imply the global criteria:

〈ξp, ξ0〉 =
∑
i

〈ξip, ξi0〉 > 0

and if ‖ξ‖< b then certainly ‖ξi‖ < b, so that

pi2 = ‖ξi‖2 < b2
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is small for each i. The theoretical guarantees for SOS will therefore hold identically for this version, simply
by transposing every global argument to the ith component. On the other hand, this variant may be more
flexible by keeping some components of p large while others are smaller, helping each player to exploit
opponent dynamics individually. In particular, the corollary above holds for ‘agentwise’ or ‘local’ SOS.

All in all, SOS is theoretically sound. On the practical side, its exploitative capacities are shown to be on
par with LOLA in Chapter 5, for suitable choices of a, b. Before moving on, can we say anything about
p-LOLA in general? Are there classes of games for which p-LOLA provably converges to SFP for any p?
This may be of interest to practitioners who disagree with our criterion choice above. Moreover, any such
result would equally apply to LOLA since one possible criterion is p ≡ 1. No theoretical guarantees are
known for LOLA, so any result would be useful and novel.

We are able to establish local convergence of p-LOLA in two-player constant-sum games and n-player
fully cooperative games, for any choice of p. In these cases LOLA has a simpler expression, as proven in
Propositions 2.24 and 2.25. These are small but interesting subclasses in multi-loss optimisation, for instance
applying to the generative adversarial networks in [Goo]. For constant-sum games, we have

LOLA = (I − αHo +H
ᵀ
o )ξ = (I + αA

ᵀ
)ξ = SGA

by Proposition 2.24 and so
p-LOLA = p · SGA + (1− p) · LA ,

an interpolation between two convergent algorithms. It is thus natural to expect local convergence in this
case, though the proof is not as immediate as we may hope. Writing

K = (I + αA
ᵀ
)H and G = (I − αHo)H

for the gradients of SGA and LA at a stable fixed point θ̄, recall that G is not necessarily positive definite.
Both G and K are positive stable, but we cannot immediately conclude that

pK + (1− p)G

is positive stable since bounding the eigenvalues of a sum of non-Hermitian matrices is an open problem.
Nonetheless, we can establish the result by a variant on the proof for lookahead, see Theorem 3.12. Further
details can be found there if the slightly more succinct arguments below are insufficient.

Proposition 4.8. p-LOLA is locally convergent to SFP in two-player zero-sum games, for any p ∈ [0, 1] and
α sufficiently small.

Proof. The gradient adjustment is given by

ξp = (I − αHo + αpH
ᵀ
o )ξ ,

with gradient
G = (I − αHo + αpH

ᵀ
o )H
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at any SFP θ̄ since ξ(θ̄) = 0. The aim is to prove positive stability of G, from which we are done by
Proposition 3.2. We use the same similarity transformation trick. First re-write

G = (I − αH + αHd + αpH
ᵀ − αpHᵀd )H

= (I + α(1− p)Hd)H − αH2 + αpH
ᵀ
H

= G1 +G2 .

Note that (I+α(1−p)Hd) is symmetric and positive definite for α ≥ 0 and p ∈ [0, 1], sinceHd is symmetric
and positive semi-definite. In particular its principal square root

M = (I + α(1− p)Hd)
1/2

is unique and invertible. Now

M−1G1M = M−1M2G1M = M
ᵀ
HM � 0

sinceH � 0. We use the same tricks of Taylor expansion and two-case analysis to conclude thatM−1GM �
0, as follows. Take any unit vector u. If uᵀHu > 0 then

u
ᵀ
M−1GMu = u

ᵀ
G1u+O(α) = u

ᵀ
Hu+O(α) > 0

for sufficiently small α and bounded p ≥ 0. Otherwise uᵀHu = 0 = u
ᵀ
Su implies Su = 0 and so Au 6= 0

by invertibility of H . Hence

u
ᵀ
M−1GMu = u

ᵀ
M−1G1Mu+ u

ᵀ
M−1G2Mu

≥ α
[
−uᵀM−1H2Mu+ pM−1H

ᵀ
HMu

]
= α

[
−uᵀH2u+ pH

ᵀ
Hu
]

+O(α2)

≥ αuᵀAᵀAu+O(α2)

= α‖Au‖2 +O(α2) > 0

for α small enough and any p ≥ 0. It follows that for any u ∈ Sm there is εu > 0 such that

u
ᵀ
M−1GMu > 0

for all 0 < α < εu and p ∈ [0, 1], and we conclude by Proposition B.3 that there exists ε > 0 such that
M−1GM � 0 for all 0 < α < ε and p ∈ [0, 1]. It follows that G is positive stable in the same range by
similarity, as required.

For (fully) cooperative games, recall that

LOLA = (I − 2αHo)ξ

by Proposition 2.25, which is identical to lookahead with α replaced by 2α. It follows that

p-LOLA = p · LOLA + (1− p) · LA = (I − α(1 + p)Ho)ξ .

Local convergence of p-LOLA hence becomes an easy consequence of Theorem 3.12.
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4.3. THEORETICAL GUARANTEES

Proposition 4.9. p-LOLA is locally convergent to SFP in n-player cooperative games, for any p ∈ [0, 1] and
α sufficiently small.

Proof. The gradient adjustment is given by

ξp = (I − α(1 + p)Ho)ξ ,

with gradient
(I − α(1 + p)Ho)H .

By Theorem 3.12, there exists ε > 0 such that

(I − αHo)H � 0

for all 0 < α < ε. In particular
(I − α(1 + p)Ho)H � 0

for all 0 < α < ε/2 and p ∈ [0, 1], since then 0 < α(1 + p) < 2α < ε. Local convergence follows as usual
by Proposition 3.2.

In particular, p-LOLA is locally convergent with any criterion in each class of games, allowing for simul-
taneously exploitative and stable capacities. The results holds for p ≡ 1, providing previously unknown
convergence guarantees for LOLA.

Corollary 4.10. LOLA is locally convergent to SFP in two-player zero-sum games and n-player cooperative
games, for α sufficiently small.

If the agents know in advance that the game is two-player zero-sum or fully cooperative, p ≡ 1 may be
the best criterion since convergence is achieved while full exploitation holds. This is virtually never true in
RL, where agents only have access to losses at the current parameters. Even for a large sample of losses
at different points, they cannot determine with high probability that a game is zero-sum, cooperative or any
such ‘meta’ property of the game. It is thus wiser to use SOS by default, if no prior knowledge about the
environment is given. This will guarantee local convergence to true fixed points in any differentiable game.
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Chapter 5

Experimental Results & Discussion

5.1 Experimental Setup

We evaluate the performance of SOS on a number of explicit differentiable games. The ‘dual game’ is con-
structed to showcase the advantages of SOS, while the iterated matching pennies and prisoner’s dilemma are
taken from [Foe] for realistic comparison with LOLA. We add the iterated stag hunt for further diversity. In
future work we hope to implement SOS on more involved settings like GANs and deep multi-agent RL (via
policy gradient approximation). We have obtained preliminary results on learning Gaussian mixtures using
GANs, with state-of-the-art results for SOS. This is not displayed here for lack of time/rigorous comparison,
though appearing soon on the arXiv. We hope the examples in this chapter to give a taste for the stable and
exploitative capacities of SOS, at least as proof of concept. In each experiment we compare performance
with LOLA, LA, SGA and NL for opponent diversity. This also improves on the results in [Foe], showing
that LOLA outperforms SGA and LA in the iterated games.

In each game we run 300 training episodes for each algorithm, where a run consists of 500 learning steps.
The parameters are initialised following a normal distribution around 0 (corresponding to 1/2 probability in
iterated bimatrix games). The only hyperparameter is the learning rate α, on top of 0 < a, b < 1 for SOS.
Recall that λ in SGA is chosen according to the criterion specified in Section 2.3.2, with modulus 1. In all
experiments we fix α = 1 as in [Foe], allowing for a large opponent shaping term. Similarly we choose
a = 0.5 and b = 0.1 everywhere; the first is an arbitrary middle ground between 0 and 1, while the latter
is intentionally small to ensure that SOS avoids poor SFP. We found the results to be dependent on b being
small enough in games like the IPD, while a is a more robust hyperparameter.

5.1.1 Iterated Bimatrix Games

A (two-player) bimatrix game is given by matrices A and B, where players 1 and 2 choose actions i, j
and receive payoffs Aij , Bij respectively. For instance, Example 2.7 corresponds to the game of matching
pennies where each player can choose Heads or Tails and

A =

 1 −1

−1 1

 = −B .
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5.1. EXPERIMENTAL SETUP

This is often summarised by writing both matrices into a table, as shown in Table 5.1

Heads Tails

Heads (1,−1) (−1, 1)

Tails (−1, 1) (1,−1)

Table 5.1: Payoff matrix for players (1, 2) in Matching Pennies.

If players 1 and 2 can choose between n and m possible actions respectively, A and B are matrices of
dimension n×m and the parameters are x ∈ Rn and y ∈ Rm respectively. The losses are given by

L1 = −xᵀAy and L2 = −xᵀBy

where minus signs account for losses being opposite to payoffs. The parameters x, y can be interpreted as
probabilities of choosing each action, either via sigmoid functions or an appropriate change of coordinates as
illustrated in Example 2.7. Iterated bimatrix games consist of an infinitely repeated sequence of such games,
where the loss is discounted by a factor γ ∈ [0, 1) at each repetition. This is identical to the non-iterated
version if the agents cannot condition their actions on previous history, since the loss would be

L1 =
∑
t≥0

−xᵀAy · γt =
−xᵀAy
1− γ

.

This is unrealistic since agents should be able to adapt their actions depending on the past – an inherent part
of human ‘learning’. As such, agents are usually enriched with a memory of length K. This would lead to
a high number of parameters for each agent, growing exponentially in K. [Pre, App. A] prove that the per-
formance of a player with memory 1 is independent from the opponent’s memory K ≥ 1 in iterated games;
we consider memory-1 agents only in this report, as in [Foe]. In all examples below, we have n = m = 2

so each player can choose between 2 actions at each step. In effect, there is only one parameter given by the
probability of choosing action 1, though there is one such parameter for each memory state.

We model iterated bimatrix games (IBG) as Markov Decision Processes (MDP). Each agent’s policy at time
t ≥ 1 is determined by the current state st, which is given by the actions of each agent at the previous step:

st = (a1
t−1, a

2
t−1)

for t > 0 and s0 = ∅ otherwise. For n = m = 2 there are thus five states

r0 = ∅, r1 = (1, 1), r2 = (1, 2), r3 = (2, 1), r4 = (2, 2) .

For example, iterated matching pennies has

r0 = ∅, r1 = HH, r2 = HT, r3 = TH, r4 = TT

where H,T correspond to playing Heads or Tails. The policy of agent i is thus fully determined by 5

parameters, namely the probability
θi,j = πi(at = 1 | st = rj)
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5.1. EXPERIMENTAL SETUP

of choosing action 1 (playing Heads) given the current state rj . In Proposition B.6 we derive analytical loss
functions for these IBG, allowing us to implement SOS without approximation methods.

The first game is iterated matching pennies (IMP), with payoff matrix in Table 5.1. The IMP has a single
Nash equilibrium, given by 50/50 strategy of playing heads or tails. Deviating from this stategy allows for
exploitation by the opponent: if agent 1 plays Heads (or Tails) with more than 50% probability, agent 2 can
play Tails (or Heads) more often to receive higher reward. Since the game is zero-sum, agent 1 correspond-
ingly wins less. The same holds for agent 2, so deviating should be avoided in the long run. The discount
factor is chosen to be γ = 0.9 as in [Foe].

Cooperate Defect

Cooperate (−1,−1) (−3, 0)

Defect (0,−3) (−2,−2)

Stag Hare

Stag (2, 2) (0, 1)

Hare (1, 0) (1, 1)

Table 5.2: Payoff matrices for players (1, 2) in Prisoner’s Dilemma (left) and Stag Hunt (right).

The second game is iterated prisoner’s dilemma (IPD), with payoff matrix in Table 5.2. This is a famous ex-
ample where two criminals are arrested and isolated from each other. Each prisoner can choose to cooperate
with her colleague by remaining silent, or defect to betray them. The payoff −c depends on both decisions,
corresponding to c years in prison. In the one-shot version, the only Nash equilibrium is for the players to
always defect (DD). In the iterated game, DD is also an equilibrium where the reward is −2 per step. There
is a better equilibrium named tit-for-tat (TFT), where each player begins by cooperating and then mimicks
the opponent’s previous action. This leads to rewards of −1 for both, since they begin by cooperating and
then always cooperate. Neither has an incentive to start defecting since the opponent will defect at the next
step otherwise, leading to lower rewards. The discount factor is chosen to be γ = 0.96 as in [Foe], with
higher value allowing for cooperation in the long run.

The final game is iterated Stag Hunt (ISH), with payoff matrix in Table 5.2. Stag Hunt is a game whereby two
hunters can individually choose to hunt a stag or a hare. Each is capable of hunting a hare by themselves, but
require the other’s help to hunt a stag. The pure Nash equilibria are both hunting stag (SS) or both hunting
hare (HH) in the one-shot game. In the iterated version, SS and HH are still equilbria with reward 2 and 1

per step respectively, and so is tit-for-tat. This example was not present in [Foe], added to show versatility in
opponent shaping for SOS and LOLA. The discount factor is γ = 0.96 for the same reason as IPD.

5.1.2 Dual Game

The results on iterated games will show that SOS is on par with LOLA with respect to exploitation. On
the other hand, recall that SOS was built to overcome LOLA’s shortcomings by preserving fixed points
and converging locally. In particular, LOLA fails to preserve the SFP (x, 10 − x) and converges to worse
parameters in the humility game, given by

L1(x, y) = (x+ y)2/2− 10x and L2(x, y) = (x+ y)2/2− 10y .
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5.2. RESULTS & DISCUSSION

Instead, SOS is guaranteed to converge to the correct SFP. Though a strong improvement over LOLA, this
is also true of other stable algorithms like CO/SGA/LA. On the other hand, the latter cannot shape opponent
learning. This is technically sufficient to conclude that SOS is superior to both classes, but we construct
an artificial game to display simultaneous superiority. We add the logistic losses from Example 2.21 to
the humility game above. Recall that SGA/CO/NL more often fail to reach the better equilibrium in the
logistic game, while LOLA succeeds. Explicitly, let f i and gi be the losses for logistic and humility games
respectively. The ‘dual’ game is defined as

Li(x, y, z, w) = f i(x, y) + gi(z, w)/5

where x, z and y, w are the first and second agent’s parameters respectively. This is equivalent to playing
logistic and humility games simultaneously. The factor of 5 is chosen to make the losses of logistic and
humility games closer in size, for simplicity of comparison in the results. It is important to combine these
games with distinct parameters, as the humility game will easily dominate the shape of the losses near the
origin otherwise. Though an artificial example, this game will point to experimental superiority of SOS in a
succinct way, through simultaneous stability and exploitation.

5.1.3 Running Times

Following Remark 4.1, running times are given in Table 5.3 for each algorithm in the iterated games. The
running time spans all 300 training runs, with 500 learning steps in each episode. Note the small disparity
between SOS and LOLA, with time ratios of 1.13/1.12/1.10 in the IMP / IPD / ISH.

SOS LOLA LA SGA NL

IMP 170.3 150.4 128.6 145.2 101.3

IPD 167.5 149.2 128.3 144.3 101.6

ISH 166.4 150.7 127.6 145.0 102.4

Table 5.3: Running times for each game across all 300 training runs, in seconds.

5.2 Results & Discussion

The results for each game are given in Figures 5.1, 5.2, 5.3 and 5.5. Parameters at the end of each training run
are displayed in part (A), with agents 1 and 2 corresponding to x and y axes respectively. Only 50 runs are
shown for parameter visibility. Losses at each learning step are displayed in part (B) of each figure, averaged
across 300 episodes with shaded standard deviations. To avoid confusion, recall that losses are the opposite
of payoffs/rewards in iterated games. Finally losses are displayed only for agent 1 for visibility, though
self-play imposes identical results for agent 2 up to random initialisation. Tables 5.4 and 5.5 summarise the
results for iterated and dual games respectively. Note also that our results for LOLA are virtually identical to
those in [Foe], despite their implementation discarding the ‘middle’ term Hoξ. Performance is therefore not
conditional on the absence of this term – while its presence is central to the idea of interpolation and SOS.
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Figure 5.1: Results in the IMP. (A) Probability that SOS, LOLA, LA, SGA, NL agents play Heads,
given memory state, at the end of 50 training runs. SOS and LOLA always play Heads with 50%,
while NL always (and LA/SGA sometimes) deviate. (B) Average loss at each learning step with
shaded standard deviations, across 300 runs. Only 200 steps are shown for visibility.

5.2.1 Iterated Bimatrix Games

The results for IMP are given in Figure 5.1. Recall that parameters in (A) are the end-run probabilities of
playing Heads for each memory state, encoded by different colours.

SOS and LOLA succeed in converging to Nash, namely always playing Heads with 50% probability. This is
displayed by the accumulation of points in the centre of (A) plots. SGA and LA sometimes deviate from this
strategy, but mostly succeed. NL fails to converge entirely, as shown by the absence of points in the center.
Failure of convergence to Nash is also shown in part (B), where losses are highly erratic for NL at each step.
The standard deviation is extremely large for NL, smaller but still significant for SGA/LA, and virtually zero
for SOS/LOLA. This is also displayed numerically in Table 5.4, including the % of runs converging to Nash.

Finally, we expected SGA/LA to be on par with SOS/LOLA regarding convergence to Nash in the IMP.
This is almost true since convergence to Nash occurs in 97.0% and 96.1% of runs, but some runs fail and
the standard deviations do not decrease after the 100th learning step. Though SGA/LA have theoretical
guarantees, these only apply for α small enough. In this case, α = 1 may be too large for convergence to
occur in all training runs. This points to another advantage of opponent shaping for SOS/LOLA, namely the
capacity to encourage cooperation and hence convergence – despite a relatively large learning rate.
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Figure 5.2: Results in the IPD. (A) Probability that SOS, LOLA, LA, SGA, NL agents cooperate, given
memory state, at the end of 50 training runs. SOS and LOLA often play tit-for-tat, while SGA/LA/NL
mostly defect. (B) Average loss at each learning step with shaded standard deviations, across 300 runs.
Only 100 steps are shown for visibility.

The results for IPD are given in Figure 5.2. Recall that parameters in (A) are the end-run probabilities of
cooperating for each memory state, encoded by different colours.

SOS and LOLA mostly succeed in playing tit-for-tat, displayed by the accumulation of points in the correct
corners of (A) plots. For instance, if agent 1 cooperates then agent 2 responds by cooperating (blue and green
points are mostly at the top). Yellow points are mostly hidden behind the blue points at the top right corner,
so the agents also cooperate in the first game iteration. Tit-for-tat strategy is further indicated by the losses
close to 1 in part (B). On the other hand, most points for LA/SGA/NL are accumulated at the bottom left,
namely agents almost always defect. This is also displayed by losses close to 2 in (B), though NL is worse
than LA which is worse than SGA.

The percentage of parameters obeying TFT policy is displayed for each algorithm in Table 5.4. This is
obtained by counting the number of points in the correct corner, as in [Foe]. Note that 20% TFT policy is au-
tomatically achieved by always defecting, since defecting when both agents defected (a fifth of parameters)
is also true in TFT policy. SOS and LOLA are able to shape opponent learning to encourage cooperation and
thus convergence to TFT with 80% probability, while SGA/LA/NL mostly defect. Finally note that the TFT
policy is sufficient but not necessary to obtain losses near 1, since SOS has lower losses than LOLA while
having a lower TFT percentage. Nonetheless, TFT is a good indicator of cooperation and opponent shaping.
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Figure 5.3: Results in the ISH. (A) Probability that SOS, LOLA, LA, SGA, NL agents hunt the stag,
given memory state, at the end of 50 training runs. SOS and LOLA have more noisy parameters but
more often play tit-for-tat. (B) Average loss at each learning step with shaded standard deviations,
across 300 runs. Only 100 steps are shown for visibility.

The results for ISH are given in Figure 5.3. Recall that parameters in (A) are the end-run probabilities of
hunting a stag for each memory state, encoded by different colours.

SOS and LOLA reach significantly lower losses than SGA/LA/NL, as displayed in (B). Unlike the IPD, this
is less evident from the parameter plots in (A), which are much noisier. The percentage of points in the
top right corner (both agents hunting stag) is displayed in Table 5.4, which is only 5 − 10 points higher for
SOS/LOLA than LA/SGA/NL. Perhaps ISH is more sensitive to random initialisation than IPD, whereby
hunters lose all incentive to hunt the stag if parameters begin with high probability of rabbit-hunting.

Note however that tit-for-tat policy reaches equally good losses of −2, which SOS/LOLA do reach more
often. This is displayed in (A) with the presence of red points in the lower right and green points in the top
right corners – though purple points are all over the place.

Finally recall that p is chosen in SOS according to the dual criterion. We plot the average p at each learning
step for each game, across all 300 episodes, in Figure 5.4. Note that p decays to zero in each of the games.
This is to be expected, since the second part of the criterion scales p down as SOS converges to fixed points.
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IMP IPD ISH

Mean(std) %Nash Mean(std) %TFT Mean(std) %SS

SOS 0(10−8) 100.0 1.06(0.19) 78.9 −1.90(0.22) 62.9

LOLA 0(10−8) 100.0 1.09(0.23) 80.3 −1.89(0.24) 61.7

LA 0(0.06) 96.1 1.93(0.24) 24.2 −1.58(0.41) 52.3

SGA 0(0.05) 97.0 1.77(0.39) 34.9 −1.61(0.41) 57.5

NL 0(0.48) 0.00 2.00(10−5) 20.3 −1.63(0.39) 53.2

Table 5.4: Summary results for each iterated game. Mean and standard deviation of losses at
the end of 300 training runs, and percentage of convergence to fixed points. Best result in bold.
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Figure 5.4: Average p for SOS at each step, with shaded deviations across 300 runs, for each game.

Across all iterated games, we see that SOS performs on par with LOLA in each of them, while outperforming
all others. Meanwhile, SOS is stronger than LOLA both theoretically through its convergence guarantees,
and practically by converging to SFP in the humility game. To show this more explicitly, we move on to the
‘dual game’ below where SOS outperforms all algorithms simultaneously.

5.2.2 Dual Game

The results for the dual game are given in Figure 5.5. The parameters in (A) are the end-run (x, y) and (z, w)

parameters corresponding to logistic and humility sub-games respectively, encoded by different colours. Re-
call that the logistic game has two SFP θ̄+ and θ̄− occurring at (x, y) ≈ ±(5, 5), where θ̄+ gives better
losses. On the other hand, the humility game has a line of SFP at y = 10− x which LOLA fails to preserve,
instead overshooting towards y ≈ 11 − x with worse losses. The percentage of training runs reaching θ̄+

and the ‘humble’ line of SFP is displayed in Table 5.5.
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Figure 5.5: Results in the dual game. (A) Parameters for SOS, LOLA, LA, SGA, NL agents at the end of 50
training runs. (B) Average loss at each learning step, across 300 runs. Only 100 steps are shown for visibility.

Mean(std) %θ̄+ %Humble

SOS −3.85(0.46) 99.8 100.0

LOLA 0.59(0.41) 99.9 0.0

LA −1.90(2.01) 50.3 100.0

SGA −1.79(2.01) 47.7 100.0

NL −1.89(2.01) 49.3 100.0

Table 5.5: Summary results in the dual game. Mean and standard deviation of losses at the end
of 300 training runs, and percentage of convergence to logistic/humility SFP. Best result in bold.

SOS is the only algorithm to succeed in reaching θ̄+ through opponent shaping, while also staying humble.
This is displayed in part (A), where blue points (hidden behind each other) are at (x, y) ≈ (5, 5) while green
points are on the line y = 10 − x. On the other hand, green points for LOLA are on the line y ≈ 11 − x
through arrogant overshooting. SGA/LA/NL only reach θ̄+ half of the time, as displayed by the blue points
at (x, y) ≈ −(5, 5). Outperformance is further manifested in part (B), where losses are lowest for SOS. This
is the behaviour we sought to find: a middle ground between stability and exploitation, exemplified in this
construction beyond our purely theoretical guarantees.
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Chapter 6

Conclusion

Machine learning is increasingly moving from optimising a single loss for a specific task, to dealing with
multiple interacting goals at once. Though the choice of architecture is central to both paradigms, success
equally hinges on strong optimisation techniques. Naively transposing gradient descent fails, while state-of-
the-art algorithms including CO and SGA are either tailored to specific problems (e.g. two-player zero-sum
games) or lack strong convergence guarantees. It is additionally unclear which solution concept best gener-
alises local minima in multi-loss optimisation.

The first contribution of this thesis was to clarify the differences between solution concepts. We showed that
not all Nash equilibria are desirable, while presenting strong Nash as an ideal but elusive alternative. Instead
we argued for the use of stable fixed points as the tractable analogue of local minima by extension from
potential games, enabling convergence guarantees in general games.

We reviewed a number of higher-order methods attempting to improve on naive gradient descent. We pointed
out that multi-agent RL calls for learning from the perspective of selfish agents, while SGA is “not concerned
with the losses of the players per se” [Bal]. Instead, SGA and CO both prioritise convergence to equilib-
ria above individual incentive. LOLA overcomes these flaws and is capable of shaping opponent learning.
Though intuitively sound, we constructed the first example where failure transpires.

Our third contribution is a number of novel (non-)convergence results on CO, SGA, symmetric and asym-
metric lookahead. Ostrowski’s Theorem allowed for a unified treatment of each algorithm, though each
proof required different techniques ranging from linear algebra and analysis to topology, including a novel
similarity transformation trick. We proved local convergence to SFP and non-convergence to unstable FP
(generalising to strict saddles) for each algorithm.

LOLA is not locally convergent, but can exploit opponent dynamics to reach better equilibria than its con-
vergent counterparts. This begged the question: can exploitation and stability be coherent? We answered
this in Chapter 4 with a resounding yes. By interpolating between LOLA and its convergent counterpart
lookahead, one can achieve the best of both worlds. The main contribution of this report is SOS, a robust
algorithm achieving (non-)convergence in all differentiable games – while exploiting opponent dynamics.
Convergence of LOLA in two-player zero-sum and n-player cooperative games was obtained as a corollary.
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CHAPTER 6. CONCLUSION

In future work we aim to go beyond game theoretic tasks by applying SOS to deep RL (with policy gra-
dient approximation), GANs and other multi-objective loss training. On the theoretical side, we hope to
develop results on divergence from more general saddle fixed points, though more difficult than those for
gradient descent in [Lee] [Pan] and perhaps infeasible using dynamical systems. A better understanding of
solution concepts including SFP may also be key to understanding the dynamics of multi-loss optimisation.
Finally we intend to work on finding an algorithm which provably converges to strong Nash, thus capable of
incorporating pure opponent terms while not breaking stability.
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Appendix A

Linear Algebra

All matrices in this report are real, so we omit further specification.

Definition A.1. A matrix M is called positive definite, written M � 0, if

x
ᵀ
Mx > 0

for all non-zero real vectors x, This is equivalent to

Re(z∗Mz) > 0

for all non-zero complex vectors z.

Remark A.2. All definitions and results in this appendix can be extended to the ‘semi’ version by replacing
> with ≥ everywhere. For instance, a matrix is called positive semi-definite, written M � 0, if

x
ᵀ
Mx ≥ 0

for all non-zero real vectors x.

Proposition A.3. A matrix M is positive definite iff

x
ᵀ
Mx > 0

for all unit real vectors x.

Proof. One direction is trivial since a unit vector is non-zero. Conversely, assume

x
ᵀ
Mx > 0

for all unit real vectors x ∈ Sd−1, where d is the dimension of M . Now Sd−1 is compact and the function
g : Sd−1 → R+ defined by g(x) = x

ᵀ
Mx is continuous, so g(Sd−1) is compact. By Heine-Borel it is closed

and bounded, in particular admitting its infimum

ε = inf g(Sd−1) > 0 .
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Hence
x
ᵀ
Mx ≥ ε

for all unit x, and for any non-zero y we have

y
ᵀ
My = ‖y‖2 y

ᵀ

‖y‖
M

y

‖y‖
≥ ‖y‖2ε > 0

as required.

Proposition A.4. A matrix M is positive definite iff its symmetric part S is positive definite.

Proof. Decomposing M = S +A, we have

x
ᵀ
Ax = (x

ᵀ
Ax)

ᵀ
= x

ᵀ
A
ᵀ
x = −xᵀAx

for any real x since A is antisymmetric, and thus

x
ᵀ
Mx = x

ᵀ
Sx+ x

ᵀ
Ax = x

ᵀ
Sx .

Definition A.5. A complex eigenvalue a+ ib is called positive if a > 0.

Definition A.6. A matrix M is called positive stable if all its eigenvalues are positive.

Proposition A.7. A positive definite matrix is positive stable.

Proof. Let λ = a+ ib be any eigenvalue of M , with (normalised) eigenvector v. We have

0 < Re(v∗Mv) = Re(λ) = a .

The converse is well-known to hold for symmetric matrices.

Proposition A.8. A symmetric matrix with positive eigenvalues is positive definite.

Proof. Since M is symmetric, there is a diagonalisation M = PDP−1 with P = P
ᵀ (orthogonal), whose

columns are orthonormal eigenvectors ui of M and D is diagonal with real eigenvalues λi > 0. Now for any
non-zero x =

∑
i aiui we have

x
ᵀ
Mx =

∑
i,j

ajaiu
ᵀ
jPD(P−1ui) =

∑
i,j

ajaiu
ᵀ
jPDei

=
∑
i,j

aiaju
ᵀ
jPλiei =

∑
i,j

aiajλiu
ᵀ
jui =

∑
i

a2
iλi > 0

as required. Alternatively note that P orthogonal implies

x
ᵀ
Mx = x

ᵀ
PDP

ᵀ
x > 0

for all non-zero x if and only if
y
ᵀ
Dy > 0

for all non-zero y, by change of variable y = P
ᵀ
x. The latter inequality is trivially true since D is diagonal

with positive entries.
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This fails for general (non-symmetric) matrices. For example,

M =

1 3

1 1


has positive eigenvalues 1±

√
3, while its symmetric part

S =

1 2

2 1


has eigenvalues −1 and 3, implying that M is not positive definite.

Proposition A.9. A positive semi-definite, invertible matrix is not necessarily positive definite.

Proof. Consider

H =

 0 1

−1 0


with symmetric part S = 0 � 0. Then H is positive semi-definite by Proposition A.4, while det(H) = 1 6=
0. Nonetheless, H is not positive definite since S isn’t, or alternatively since

(
1 0

)
H

1

0

 =

(
1 0

)
H

 0

−1

 = 0 .

Proposition A.10. A symmetric positive semi-definite, invertible matrix is positive definite.

Proof. A symmetric positive semi-definite matrix has real, real eigenvalues. By invertibility, they are positive
and we are done by Proposition A.8.

Proposition A.11. Let A and B any matrices. Then AB and BA have identical eigenvalues.

Proof. Assume AB has a non-zero eigenvalue

ABv = λv .

Then Bv 6= 0 and
(BA)Bv = B(ABv) = λBv ,

so λ is also an eigenvalue of BA. Otherwise, AB has a zero eigenvalue and

det(BA) = det(B) det(A) = det(AB) = 0 ,

so BA also has a zero eigenvalue. The converse argument holds identically, so we are done.
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Analysis and Topology

Proposition B.1. If θ̄ is a Nash equilibrium then ξ(θ̄) = 0 and ∇iiLi(θ̄) � 0 for each i.

Proof. By definition of Nash, (θ̄i, θ̄−i) is a local minimum of Li(θi, θ̄−i) as a function of θi only. It is
an elementary result in analysis that local minima have zero derivative, as can be proved by definition of
derivative or Taylor expansion. Hence ∇iLi(θ̄i, θ̄−i) = 0 for each i and thus ξ(θ̄) = 0. Now assume for
contradiction that for some i,∇iiLi(θ̄) � 0. Then there exists a non-zero real vector u ∈ Rdi such that

u
ᵀ∇iiLi(θ̄) < 0 .

In particular, by Taylor expansion we have

Li(θ̄i + εu, θ̄−i) = Li(θ̄) + ε∇iLi(θ̄) · u+ ε2u
ᵀ∇iiLi(θ̄)u+O(ε3)

= Li(θ̄) + ε2u
ᵀ∇iiLi(θ̄)u+O(ε3)

< Li(θ̄)

for small enough ε > 0, which contradicts the definition of Nash. Hence ∇iiLi(θ̄) � 0 for each i as
required.

Proposition B.2. Let F : Ω → Rd be continuously differentiable on an open subset Ω ⊆ Rd, and assume
x̄ ∈ Ω is a fixed point. If all eigenvalues of ∇F (x̄) are strictly in the unit circle of C, then there is an open
neighbourhood U of x̄ such that for all x0 ∈ U , the sequence F (k)(x0) converges to x̄. Moreover, the rate of
convergence is at least linear in k.

The intuition for this result is that dynamics near a fixed point of F are governed primarily by the gradient
of F , by Taylor expansion. If the eigenvalues of ∇F are in the unit circle then nearby points are attracted
and pulled to the fixed point, resulting in convergence.

Proof. This is a sketch proof following [Ort] closely, with further details in the book. By assumption, the
eigenvalues of ∇F (x̄) all satisfy |λ| < δ for some δ < 1. For any ε > 0, [Ort, 2.2.8] proves the existence of
a norm on Rd such that

‖∇F (x̄)‖ ≤ δ + ε .
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The intuition is that ∇F (x̄) = PJP−1 with Jordan normal form J with diagonal entries λi, in turn similar
to J ε obtained by replacing off-diagonal 1’s by ε. Now this matrix has induced norm

‖J ε‖1 = max
1≤j≤d

d∑
i=1

∣∣J εij∣∣ = |λi + ε| ≤ δ + ε .

Finally one can construct the norm ‖x‖ := ‖Px‖1 and obtain

‖∇F (x̄)‖ ≤ δ + ε

also. Further details can be found in [Ort]. In particular, take ε > 0 such that δ + 2ε < 1. Now F is
continuously differentiable at x̄, so in particular Fréchet differentiable and thus

lim
x→x̄

‖F (x)− F (x̄)−∇F (x̄)(x− x̄)‖
‖x− x̄‖

= 0 .

By definition of limits, there exists a neighbourhood U of x̄ such that

‖F (x)− F (x̄)−∇F (x̄)‖ ≤ ε‖x− x̄‖

for all x ∈ U . Now using the assumption F (x̄) = x̄ and the triangle inequality, we have

‖F (x)− x̄‖ = ‖F (x)− F (x̄)‖
≤ ‖F (x)− F (x̄)−∇F (x̄)(x− x̄)‖+ ‖∇F (x̄)‖‖x− x̄‖
≤ (δ + 2ε)‖x− x̄‖ .

By induction we obtain
‖F k(x0)− x̄‖ ≤ (δ + 2ε)k‖x− x̄‖

with δ + 2ε < 1 and hence
lim
k→∞

F k(x0) = x̄

for any x0 ∈ U . Moreover the rate of convergence is at least linear in k since

F k+1(x0)− x̄
F k(x0)− x̄

≤ (δ + 2ε) < 1

for all k.

Proposition B.3. Let g : R+×Y → Z continuous with Y compact and Z ⊆ R. Assume that for any u ∈ Y
there is εu > 0 such that

g(α, u) > 0

for all 0 < α < εu. Then there exists ε > 0 such that

g(α, u) > 0

for all 0 < α < ε and u ∈ Y .
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Proof. For any u ∈ Y there is εu > 0 such that

(0, εu)× {u} ⊆ g−1(0,∞) .

We would like to extend this uniformly in u, namely prove that

(0, ε)× Y ⊆ g−1(0,∞) .

for some ε > 0. Now g−1(0,∞) is open by continuity of g, so each (0, εu)× {u} has a neighbourhood Xu

contained in g−1(0,∞). Open sets in a product topology are unions of open products, so

Xu =
⋃
x

Ux × Vx .

In particular (0, εu) ⊆
⋃
x Ux and at least one Vx contains u, so we can take the open neighbourhood to be

(0, εu)× Vu for some neighbourhood Vu of u. In particular

Y ⊆
⋃
u∈Y

Vu ,

and by compactness there is a finite cover

Y ⊆
k⋃
i=1

Vui .

Letting ε = min{εi}ki=1 > 0, we have

(0, ε)× Y ⊆ (0, ε)×
k⋃
i=1

Vui

=

k⋃
i=1

(0, ε)× Vui

⊆
k⋃
i=1

(0, εi)× Vui ⊆ g−1(0,∞)

as required.

Remark B.4. Another proof idea might be to construct an explicit continuous function f : Y → Z such that
f(Y ) ⊂ R+ and

g(α, u) > 0

for all 0 < α < f(u). A continuous function on a compact set attains its infimum, so

g(α, u) > 0

for all 0 < α < infu f(u) with infu f(u) > 0. Even lower semi-continuity would be sufficient for this
argument, namely that f−1(c,∞) is open for any c > 0. Unfortunately it is not obvious how to construct
such a function, because εu does not arise explicitly. One choice might be

f(u) = sup{δ > 0 | uᵀM−1GMu > 0 for all 0 < α < δ} ,

for which we were not quite able to prove lower semi-continuity. In any case, the proof above is shorter.
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Proposition B.5. Let ak and bk be sequences of real numbers, and define ck = min{ak, bk}. If

L = lim
k→∞

ck and L′ = lim
k→∞

ak

both exist then L ≤ L′.

Proof. Assume for contradiction that L > L′, then there exists δ > 0 such that L > L′ + δ. By definition of
limits, there exist M,N ∈ N such that

|ck − L| < δ/2

and ∣∣ak′ − L′∣∣ < δ/2

for all k ≥M , k′ ≥ N . Expanding the absolute value, this implies

L− δ/2 < ck < L+ δ/2 and L′ − δ/2 < ak < L′ + δ/2

for all k ≥ max{M,N}. Now ck ≤ ak for all k, hence

L− δ/2 < ck ≤ ak < L′ + δ/2

which implies the contradiction
L < L′ + δ .

Proposition B.6. Consider any two-player IBG with discount factor γ and payoff matrices A,B of dimen-
sion 2× 2. Recall the transition probabilities

θi,j = πi(at = 1 | st = rj)

for player i and state rj . Define the parameter vector

θi = (θi,1, θi,2, θi,3, θi,4)
ᵀ

for each player i, initial distribution

p = (θ1,0θ2,0, θ1,0(1− θ2,0), (1− θ1,0)θ2,0, (1− θ1,0)(1− θ2,0))
ᵀ

and transition matrix

P = (θ1 ◦ θ2, θ1 ◦ (1− θ2), (1− θ1) ◦ θ2, (1− θ1) ◦ (1− θ2)) .

Finally define the reward vectors

v1 = flatten(A)
ᵀ and v2 = flatten(B)

ᵀ

where the ‘flatten’ operator places the rows of a matrix side by side into a single row vector. If Rit is the
reward of agent i at time t then the loss function associated to this IBG is given by

Li := −
∑
t

γtRit = −pᵀ(I − γP )−1vi .
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Proof. We follow [Foe, App. A.2] in our own words, with further detail. By definition of P we have

P (st = rk | st−1 = rj) = Pjk

and hence
P (st = rk | s0 = rj) = P tjk

for all t ≥ 1. It follows immediately that

Ri0 =
∑
k

P (s0 = rk)v
i
k =

∑
k

pkv
i
k = p

ᵀ
vi

and

Rit =
∑
k

P (st = rk)v
i
k

=
∑
j,k

P (s0 = rj)P (st = rk | s0 = rj)v
i
k

=
∑
j,k

pjP
t
jkv

i
k = p

ᵀ
P tvi

for t > 0. The loss function of an iterated game with discount factor γ is given by

Li = −
∑
t

γtRit = −pᵀ
∑
t

γtP tvi ,

and since P is a stochastic matrix we obtain

Li = −pᵀ(I − γP )−1vi .
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